name "calc2"

; command prompt based simple calculator (+,-,*,/) for 8086.
; example of calculation:
; input 1 <- number:   10 
; input 2 <- operator: - 
; input 3 <- number:   5 
; ------------------- 
;     10 - 5 = 5 
; output  -> number:   5





;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; this maro is copied from emu8086.inc ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; this macro prints a char in AL and advances
; the current cursor position:
PUTC    MACRO   char
        PUSH    AX
        MOV     AL, char
        MOV     AH, 0Eh
        INT     10h     
        POP     AX
ENDM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;





org 100h

jmp start


; define variables:

msg0 db "note: calculator works with integer values only.",0Dh,0Ah
     db "to learn how to output the result of a float division see float.asm in examples",0Dh,0Ah,'$'
msg1 db 0Dh,0Ah, 0Dh,0Ah, 'enter first number: $'
msg2 db "enter the operator:    +  -  *  /     : $"
msg3 db "enter second number: $"
msg4 db  0dh,0ah , 'the approximate result of my calculations is : $' 
msg5 db  0dh,0ah ,'thank you for using the calculator! press any key... ', 0Dh,0Ah, '$'
err1 db  "wrong operator!", 0Dh,0Ah , '$'
smth db  " and something.... $"

; operator can be: '+','-','*','/' or 'q' to exit in the middle.
opr db '?'

; first and second number:
num1 dw ?
num2 dw ?


start:
mov dx, offset msg0
mov ah, 9
int 21h


lea dx, msg1
mov ah, 09h    ; output string at ds:dx
int 21h  


; get the multi-digit signed number
; from the keyboard, and store
; the result in cx register:

call scan_num

; store first number:
mov num1, cx 



; new line:
putc 0Dh
putc 0Ah




lea dx, msg2
mov ah, 09h     ; output string at ds:dx
int 21h  


; get operator:
mov ah, 1   ; single char input to AL.
int 21h
mov opr, al



; new line:
putc 0Dh
putc 0Ah


cmp opr, 'q'      ; q - exit in the middle.
je exit

cmp opr, '*'
jb wrong_opr
cmp opr, '/'
ja wrong_opr






; output of a string at ds:dx
lea dx, msg3
mov ah, 09h
int 21h  


; get the multi-digit signed number
; from the keyboard, and store
; the result in cx register:

call scan_num


; store second number:
mov num2, cx 




lea dx, msg4
mov ah, 09h      ; output string at ds:dx
int 21h  




; calculate:





cmp opr, '+'
je do_plus

cmp opr, '-'
je do_minus

cmp opr, '*'
je do_mult

cmp opr, '/'
je do_div


; none of the above....
wrong_opr:
lea dx, err1
mov ah, 09h     ; output string at ds:dx
int 21h  


exit:
; output of a string at ds:dx
lea dx, msg5
mov ah, 09h
int 21h  


; wait for any key...
mov ah, 0
int 16h


ret  ; return back to os.











do_plus:


mov ax, num1
add ax, num2
call print_num    ; print ax value.

jmp exit



do_minus:

mov ax, num1
sub ax, num2
call print_num    ; print ax value.

jmp exit




do_mult:

mov ax, num1
imul num2 ; (dx ax) = ax * num2. 
call print_num    ; print ax value.
; dx is ignored (calc works with tiny numbers only).

jmp exit




do_div:
; dx is ignored (calc works with tiny integer numbers only).
mov dx, 0
mov ax, num1
idiv num2  ; ax = (dx ax) / num2.
cmp dx, 0
jnz approx
call print_num    ; print ax value.
jmp exit
approx:
call print_num    ; print ax value.
lea dx, smth
mov ah, 09h    ; output string at ds:dx
int 21h  
jmp exit









;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; these functions are copied from emu8086.inc ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


; gets the multi-digit SIGNED number from the keyboard,
; and stores the result in CX register:
SCAN_NUM        PROC    NEAR
        PUSH    DX
        PUSH    AX
        PUSH    SI
        
        MOV     CX, 0

        ; reset flag:
        MOV     CS:make_minus, 0

next_digit:

        ; get char from keyboard
        ; into AL:
        MOV     AH, 00h
        INT     16h
        ; and print it:
        MOV     AH, 0Eh
        INT     10h

        ; check for MINUS:
        CMP     AL, '-'
        JE      set_minus

        ; check for ENTER key:
        CMP     AL, 0Dh  ; carriage return?
        JNE     not_cr
        JMP     stop_input
not_cr:


        CMP     AL, 8                   ; 'BACKSPACE' pressed?
        JNE     backspace_checked
        MOV     DX, 0                   ; remove last digit by
        MOV     AX, CX                  ; division:
        DIV     CS:ten                  ; AX = DX:AX / 10 (DX-rem).
        MOV     CX, AX
        PUTC    ' '                     ; clear position.
        PUTC    8                       ; backspace again.
        JMP     next_digit
backspace_checked:


        ; allow only digits:
        CMP     AL, '0'
        JAE     ok_AE_0
        JMP     remove_not_digit
ok_AE_0:        
        CMP     AL, '9'
        JBE     ok_digit
remove_not_digit:       
        PUTC    8       ; backspace.
        PUTC    ' '     ; clear last entered not digit.
        PUTC    8       ; backspace again.        
        JMP     next_digit ; wait for next input.       
ok_digit:


        ; multiply CX by 10 (first time the result is zero)
        PUSH    AX
        MOV     AX, CX
        MUL     CS:ten                  ; DX:AX = AX*10
        MOV     CX, AX
        POP     AX

        ; check if the number is too big
        ; (result should be 16 bits)
        CMP     DX, 0
        JNE     too_big

        ; convert from ASCII code:
        SUB     AL, 30h

        ; add AL to CX:
        MOV     AH, 0
        MOV     DX, CX      ; backup, in case the result will be too big.
        ADD     CX, AX
        JC      too_big2    ; jump if the number is too big.

        JMP     next_digit

set_minus:
        MOV     CS:make_minus, 1
        JMP     next_digit

too_big2:
        MOV     CX, DX      ; restore the backuped value before add.
        MOV     DX, 0       ; DX was zero before backup!
too_big:
        MOV     AX, CX
        DIV     CS:ten  ; reverse last DX:AX = AX*10, make AX = DX:AX / 10
        MOV     CX, AX
        PUTC    8       ; backspace.
        PUTC    ' '     ; clear last entered digit.
        PUTC    8       ; backspace again.        
        JMP     next_digit ; wait for Enter/Backspace.
        
        
stop_input:
        ; check flag:
        CMP     CS:make_minus, 0
        JE      not_minus
        NEG     CX
not_minus:

        POP     SI
        POP     AX
        POP     DX
        RET
make_minus      DB      ?       ; used as a flag.
SCAN_NUM        ENDP





; this procedure prints number in AX,
; used with PRINT_NUM_UNS to print signed numbers:
PRINT_NUM       PROC    NEAR
        PUSH    DX
        PUSH    AX

        CMP     AX, 0
        JNZ     not_zero

        PUTC    '0'
        JMP     printed

not_zero:
        ; the check SIGN of AX,
        ; make absolute if it's negative:
        CMP     AX, 0
        JNS     positive
        NEG     AX

        PUTC    '-'

positive:
        CALL    PRINT_NUM_UNS
printed:
        POP     AX
        POP     DX
        RET
PRINT_NUM       ENDP



; this procedure prints out an unsigned
; number in AX (not just a single digit)
; allowed values are from 0 to 65535 (FFFF)
PRINT_NUM_UNS   PROC    NEAR
        PUSH    AX
        PUSH    BX
        PUSH    CX
        PUSH    DX

        ; flag to prevent printing zeros before number:
        MOV     CX, 1

        ; (result of "/ 10000" is always less or equal to 9).
        MOV     BX, 10000       ; 2710h - divider.

        ; AX is zero?
        CMP     AX, 0
        JZ      print_zero

begin_print:

        ; check divider (if zero go to end_print):
        CMP     BX,0
        JZ      end_print

        ; avoid printing zeros before number:
        CMP     CX, 0
        JE      calc
        ; if AX<BX then result of DIV will be zero:
        CMP     AX, BX
        JB      skip
calc:
        MOV     CX, 0   ; set flag.

        MOV     DX, 0
        DIV     BX      ; AX = DX:AX / BX   (DX=remainder).

        ; print last digit
        ; AH is always ZERO, so it's ignored
        ADD     AL, 30h    ; convert to ASCII code.
        PUTC    AL


        MOV     AX, DX  ; get remainder from last div.

skip:
        ; calculate BX=BX/10
        PUSH    AX
        MOV     DX, 0
        MOV     AX, BX
        DIV     CS:ten  ; AX = DX:AX / 10   (DX=remainder).
        MOV     BX, AX
        POP     AX

        JMP     begin_print
        
print_zero:
        PUTC    '0'
        
end_print:

        POP     DX
        POP     CX
        POP     BX
        POP     AX
        RET
PRINT_NUM_UNS   ENDP



ten             DW      10      ; used as multiplier/divider by SCAN_NUM & PRINT_NUM_UNS.







GET_STRING      PROC    NEAR
PUSH    AX
PUSH    CX
PUSH    DI
PUSH    DX

MOV     CX, 0                   ; char counter.

CMP     DX, 1                   ; buffer too small?
JBE     empty_buffer            ;

DEC     DX                      ; reserve space for last zero.


;============================
; Eternal loop to get
; and processes key presses:

wait_for_key:

MOV     AH, 0                   ; get pressed key.
INT     16h

CMP     AL, 0Dh                  ; 'RETURN' pressed?
JZ      exit_GET_STRING


CMP     AL, 8                   ; 'BACKSPACE' pressed?
JNE     add_to_buffer
JCXZ    wait_for_key            ; nothing to remove!
DEC     CX
DEC     DI
PUTC    8                       ; backspace.
PUTC    ' '                     ; clear position.
PUTC    8                       ; backspace again.
JMP     wait_for_key

add_to_buffer:

        CMP     CX, DX          ; buffer is full?
        JAE     wait_for_key    ; if so wait for 'BACKSPACE' or 'RETURN'...

        MOV     [DI], AL
        INC     DI
        INC     CX
        
        ; print the key:
        MOV     AH, 0Eh
        INT     10h

JMP     wait_for_key
;============================

exit_GET_STRING:

; terminate by null:
MOV     [DI], 0

empty_buffer:

POP     DX
POP     DI
POP     CX
POP     AX
RET
GET_STRING      ENDP 

Assembly Online Compiler

Write, Run & Share Assembly code online using OneCompiler's Assembly online compiler for free. It's one of the robust, feature-rich online compilers for Assembly language. Getting started with the OneCompiler's Assembly compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as Assembly and start coding.

About Assembly

Assembly language(asm) is a low-level programming language, where the language instructions will be more similar to machine code instructions.

Every assembler may have it's own assembly language designed for a specific computers or an operating system.

Assembly language requires less execution time and memory. It is more helful for direct hardware manipulation, real-time critical applications. It is used in device drivers, low-level embedded systems etc.

Syntax help

Assembly language usually consists of three sections,

  1. Data section

    To initialize variables and constants, buffer size these values doesn't change at runtime.

  2. bss section

    To declare variables

  3. text section

    _start specifies the starting of this section where the actually code is written.

Variables

There are various define directives to allocate space for variables for both initialized and uninitialized data.

1. To allocate storage space to Initialized data

Syntax

variable-name    define-directive    initial-value 
Define DirectiveDescriptionAllocated Space
DBDefine Byte1 byte
DWDefine Word2 bytes
DDDefine Doubleword4 bytes
DQDefine Quadword8 bytes
DTDefine Ten Bytes10 bytes

2. To allocate storage space to un-initialized data

Define DirectiveDescription
RESBReserve a Byte
RESWReserve a Word
RESDReserve a Doubleword
RESQReserve a Quadword
RESTReserve a Ten Bytes

Constants

Constants can be defined using

1. equ

  • To define numeric constants
CONSTANT_NAME EQU regular-exp or value

2. %assign

  • To define numeric constants.
%assign constant_name value

3. %define

  • To define numeric or string constants.
%define constant_name value

Loops

Loops are used to iterate a set of statements for a specific number of times.

mov ECX,n
L1:
;<loop body>
loop L1

where n specifies the no of times loops should iterate.

Procedures

Procedure is a sub-routine which contains set of statements. Usually procedures are written when multiple calls are required to same set of statements which increases re-usuability and modularity.

procedure_name:
   ;procedure body
   ret