//Servo motor library #include <Servo.h> //Initialize variables int mode = 0; int axe = 0; int buttonState1 = 0; int buttonState2 = 0; int prevButtonState1 = 0; int prevButtonState2 = 0; int ldrtopr= 0; // top-right LDR int ldrtopl = 1; // top-left LDR int ldrbotr = 2; // bottom-right LDR int ldrbotl = 3; // bottom-left LDR int topl = 0; int topr = 0; int botl = 0; int botr = 0; //Declare two servos Servo servo_updown; Servo servo_rightleft; int threshold_value=10; //measurement sensitivity void setup() { Serial.begin(9600); //serial connection setup //opens serial port, sets data rate to 9600 bps Serial.println("CLEARDATA"); //clear all data that’s been place in already Serial.println("LABEL,t,voltage,current,power,Mode"); //define the column headings (PLX-DAQ command) pinMode(12, INPUT); //Mode switch Button pinMode(11, INPUT); //Axis switch pinMode(A4, INPUT); //Potentiometer for right-left movement and for up-down movement servo_updown.attach(5); //Servo motor up-down movement servo_rightleft.attach(6); //Servo motor right-left movement } void loop() { // pv_power(); char Mode; float volt = analogRead(A5)*5.0/1023; float voltage = 2*volt; // Volt=(R1/R1+R2)*Voltage / R1=R2=10Ohms => voltage=2*volt) float current = voltage/20; // I=voltage/(R1+R2) float power = voltage*current; Serial.print("DATA,TIME,"); // PLX-DAQ command Serial.print(voltage); //send the voltage to serial port Serial.print(","); Serial.print(current); //send the current to serial port Serial.print(","); Serial.print(power); //send the power to serial port Serial.print(","); // Serial.println(Mode); buttonState1 = digitalRead(12); if (buttonState1 != prevButtonState1) { if (buttonState1 == HIGH) { //Change mode and ligh up the correct indicator if (mode == 1) { mode = 0; } else { mode = 1; } } } prevButtonState1 = buttonState1; delay(50); // Wait for 50 millisecond(s) if (mode == 0) { Mode='M'; Serial.println(Mode); //send Mode "Manual" to serial port manualsolartracker(); } else { // mode automatic Mode = 'A'; Serial.println(Mode); automaticsolartracker(); //send Mode "Automatic" to serial port } } void automaticsolartracker(){ //capturing analog values of each LDR topr= analogRead(ldrtopr); //capturing analog value of top right LDR topl= analogRead(ldrtopl); //capturing analog value of top left LDR botr= analogRead(ldrbotr); //capturing analog value of bot right LDR botl= analogRead(ldrbotl); //capturing analog value of bot left LDR // calculating average int avgtop = (topr + topl) / 2; //average of top LDRs int avgbot = (botr + botl) / 2; //average of bottom LDRs int avgleft = (topl + botl) / 2; //average of left LDRs int avgright = (topr + botr) / 2; //average of right LDRs //Get the different int diffelev = avgtop - avgbot; //Get the different average betwen LDRs top and LDRs bot int diffazi = avgright - avgleft; //Get the different average betwen LDRs right and LDRs left //left-right movement of solar tracker if (abs(diffazi) >= threshold_value){ //Change position only if light difference is bigger then the threshold_value if (diffazi > 0) { if (servo_rightleft.read() < 180) { servo_rightleft.write((servo_updown.read() + 2)); } } if (diffazi < 0) { if (servo_rightleft.read() > 0) { servo_rightleft.write((servo_updown.read() - 2)); } } } //up-down movement of solar tracker if (abs(diffelev) >= threshold_value){ //Change position only if light difference is bigger then thethreshold_value if (diffelev > 0) { if (servo_updown.read() < 180) { servo_updown.write((servo_rightleft.read() - 2)); } } if (diffelev < 0) { if (servo_updown.read() > 0) { servo_updown.write((servo_rightleft.read() + 2)); } } } } void manualsolartracker(){ buttonState2 = digitalRead(13); if (buttonState2 != prevButtonState2) { if (buttonState2 == HIGH) { //Change mode and ligh up the correct indicator if (axe == 1) { axe = 0; } else { axe = 1; } } } prevButtonState2 = buttonState2; delay(50); // Wait for 50 millisecond(s) if (axe == 0) { //control right-left movement servo_rightleft.write(map(analogRead(A4), 0, 1023, 0, 180)); } else { // //control up-down movement servo_updown.write(map(analogRead(A4), 0, 1023, 0, 180)); } }
Write, Run & Share Assembly code online using OneCompiler's Assembly online compiler for free. It's one of the robust, feature-rich online compilers for Assembly language. Getting started with the OneCompiler's Assembly compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as Assembly
and start coding.
Assembly language(asm) is a low-level programming language, where the language instructions will be more similar to machine code instructions.
Every assembler may have it's own assembly language designed for a specific computers or an operating system.
Assembly language requires less execution time and memory. It is more helful for direct hardware manipulation, real-time critical applications. It is used in device drivers, low-level embedded systems etc.
Assembly language usually consists of three sections,
Data section
To initialize variables and constants, buffer size these values doesn't change at runtime.
bss section
To declare variables
text section
_start
specifies the starting of this section where the actually code is written.
There are various define directives to allocate space for variables for both initialized and uninitialized data.
variable-name define-directive initial-value
Define Directive | Description | Allocated Space |
---|---|---|
DB | Define Byte | 1 byte |
DW | Define Word | 2 bytes |
DD | Define Doubleword | 4 bytes |
DQ | Define Quadword | 8 bytes |
DT | Define Ten Bytes | 10 bytes |
Define Directive | Description |
---|---|
RESB | Reserve a Byte |
RESW | Reserve a Word |
RESD | Reserve a Doubleword |
RESQ | Reserve a Quadword |
REST | Reserve a Ten Bytes |
Constants can be defined using
CONSTANT_NAME EQU regular-exp or value
%assign constant_name value
%define constant_name value
Loops are used to iterate a set of statements for a specific number of times.
mov ECX,n
L1:
;<loop body>
loop L1
where n specifies the no of times loops should iterate.
Procedure is a sub-routine which contains set of statements. Usually procedures are written when multiple calls are required to same set of statements which increases re-usuability and modularity.
procedure_name:
;procedure body
ret