TITLE Arrays, Addressing, and Stack-Passed Parameter INCLUDE Irvine32.inc .data LO equ 5 ; Lower bound for random numbers HI equ 60 ; Upper bound for random numbers ARRAYSIZE equ 200 ; Size of the array randArray DWORD ARRAYSIZE dup(?) ; Array to store random numbers countsArray DWORD (HI-LO+1) dup(0) ; Array to store counts of each number intro1 BYTE "This program generates 200 random integers between 15 and 50, inclusive.", 0 intro2 BYTE "It then displays the original list, sorts the list, displays the median value of the list, ", 0 intro3 BYTE "displays the list sorted in ascending order, and finally displays the number of instances ", 0 intro4 BYTE "of each generated value, starting with the number of lowest.", 0 myName BYTE "Programmed by ME", 0 unsortedTitle BYTE "Your unsorted random numbers:", 0 sortedTitle BYTE "Your sorted random numbers:", 0 countsTitle BYTE "Your list of instances of each generated number, starting with the smallest value:", 0 medianTitle BYTE "The median value of the array: ", 0 goodbyeMessage BYTE "Goodbye, and thanks for using my MASM program!", 0 .code main PROC ; Initialize the program call Randomize push OFFSET intro1 push OFFSET intro2 push OFFSET intro3 push OFFSET intro4 call introduction ; Fill the array with random numbers push OFFSET randArray call fillArray ; Display the unsorted array push ARRAYSIZE push OFFSET randArray push OFFSET unsortedTitle call displayList ; Sort the array push OFFSET randArray call sortList ; Display the median push OFFSET randArray push OFFSET medianTitle call displayMedian ; Display the sorted array push ARRAYSIZE push OFFSET randArray push OFFSET sortedTitle call displayList ; Count elements in the array push OFFSET countsArray push OFFSET randArray call countList ; Display the counts push (HI-LO+1) push OFFSET countsArray push OFFSET countsTitle call displayList ;Display goodbye call goodbye exit main ENDP ;------------------------------------------------------------------------------ ;Introduction ;------------------------------------------------------------------------------ introduction PROC pushad ; Save all general-purpose registers mov esi, [esp + 32] ; Move intro1's address into ESI call WriteString ; Display intro1 call Crlf mov esi, [esp + 36] ; Move intro2's address into ESI call WriteString ; Display intro2 call Crlf mov esi, [esp + 40] ; Move intro3's address into ESI call WriteString ; Display intro3 call Crlf mov esi, [esp + 44] ; Move intro4's address into ESI call WriteString ; Display intro4 call Crlf popad ; Restore all general-purpose registers ret 16 ; Clean up the stack and return introduction ENDP ;------------------------------------------------------------------------------ ;Fill Array ;------------------------------------------------------------------------------ fillArray PROC push ebp mov ebp, esp ; Establish stack frame mov ecx, ARRAYSIZE ; Set loop counter to the size of the array mov edi, [ebp+8] ; Address of randArray fillLoop: push HI ; Upper limit for random number push LO ; Lower limit for random number call RandomRange add esp, 8 ; Clean up the stack mov [edi], eax ; Store the random number in the array add edi, 4 ; Move to the next element in the array loop fillLoop ; Loop until the array is filled pop ebp ; Restore base pointer ret 4 ; Clean up the stack and return fillArray ENDP ;------------------------------------------------------------------------------ ;List sort ;------------------------------------------------------------------------------ sortList PROC push esi push edi push ebx mov esi, [esp + 12] ; esi points to the start of the array (randArray) mov ecx, ARRAYSIZE ; Loop counter for the outer loop outerLoop: dec ecx ; Decrement outer loop counter mov ebx, ecx ; Inner loop counter mov edi, esi ; Start of the array for inner loop innerLoop: mov eax, [edi] ; Load current element cmp eax, [edi+4] ; Compare with next element jle noSwap ; If in correct order, no swap needed ; Swap elements xchg eax, [edi+4] ; Exchange with next element mov [edi], eax ; Store back the swapped value noSwap: add edi, 4 ; Move to the next element dec ebx ; Decrement inner loop counter jnz innerLoop ; Continue inner loop if not zero cmp ecx, 1 ; Check if outer loop is finished jne outerLoop ; Continue outer loop if not finished pop ebx pop edi pop esi ret 4 ; Clean up the stack and return sortList ENDP ;------------------------------------------------------------------------------ ;Display the List ;------------------------------------------------------------------------------ displayList PROC push ebp mov ebp, esp mov edx, [ebp + 8] ; Pointer to title string call WriteString ; Display title call Crlf ; New line mov ecx, [ebp + 16] ; Length of the array mov ebx, [ebp + 12] ; Pointer to the array displayLoop: test ecx, ecx ; Check if loop counter is 0 jz endDisplay ; If zero, end loop mov eax, [ebx] ; Load current array element call WriteDec ; Display element push eax ; Save EAX since WriteChar modifies it mov al, ' ' ; Load space character into AL call WriteChar ; Write space character pop eax ; Restore EAX add ebx, 4 ; Move to next element loop displayLoop endDisplay: call Crlf ; New line after list pop ebp ret 12 ; Clean up the stack and return displayList ENDP ;------------------------------------------------------------------------------ ;Display Median ;------------------------------------------------------------------------------ displayMedian PROC push ebp mov ebp, esp mov edx, [ebp + 8] ; Pointer to median title string call WriteString ; Display title mov eax, ARRAYSIZE ; Load array size into eax mov ebx, [ebp + 12] ; Pointer to the array (randArray) test eax, 1 ; Check if even or odd jnz oddSize ; If odd, jump to handling for an odd-sized array ; Handle even-sized array shr eax, 1 ; Divide by 2 to find the middle, eax now has the upper middle index dec eax ; Adjust for the lower middle index (zero-based) imul ecx, eax, 4 ; Multiply index by 4 to get byte offset for the lower middle element add ebx, ecx ; Adjust ebx to point to the lower middle element mov eax, [ebx] ; Load the lower middle element add eax, [ebx + 4] ; Add the value of the upper middle element sar eax, 1 ; Arithmetic shift right by 1 to get the average jmp displayMedianValue ; Proceed to display the median oddSize: ; Handle odd-sized array shr eax, 1 ; Divide by 2 to find the middle index imul ecx, eax, 4 ; Multiply index by 4 to get byte offset add ebx, ecx ; Adjust ebx to point to the middle element mov eax, [ebx] ; Load the middle element displayMedianValue: ; Display the median value call WriteDec ; Display median value call Crlf ; New line pop ebp ret 8 ; Clean up the stack and return displayMedian ENDP ;------------------------------------------------------------------------------ ;Count List ;------------------------------------------------------------------------------ countList PROC push ebp mov ebp, esp mov esi, [ebp + 12] ; Pointer to randArray mov edi, [ebp + 8] ; Pointer to countsArray xor ecx, ecx ; Clear ecx for counting mov ecx, ARRAYSIZE ; Counter set to size of randArray countLoop: test ecx, ecx ; Check if loop counter is 0 jz endCount ; If zero, end loop mov eax, [esi] ; Load current element from randArray sub eax, LO ; Subtract LO to get index for countsArray inc dword ptr [edi + eax*4] ; Increment count for this element add esi, 4 ; Move to next element in randArray loop countLoop endCount: pop ebp ret 8 ; Clean up the stack and return countList ENDP ;------------------------------------------------------------------------------ ; Goodbye Message ; Displays a farewell message to the user. ;------------------------------------------------------------------------------ goodbye PROC pushad ; Save all general-purpose registers mov edx, OFFSET goodbyeMessage ; Load the address of the goodbye message call WriteString ; Display the goodbye message call Crlf ; New line for clean output popad ; Restore all general-purpose registers ret goodbye ENDP Invoke ExitProcess,0 ; exit to OS END main
Write, Run & Share Assembly code online using OneCompiler's Assembly online compiler for free. It's one of the robust, feature-rich online compilers for Assembly language. Getting started with the OneCompiler's Assembly compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as Assembly
and start coding.
Assembly language(asm) is a low-level programming language, where the language instructions will be more similar to machine code instructions.
Every assembler may have it's own assembly language designed for a specific computers or an operating system.
Assembly language requires less execution time and memory. It is more helful for direct hardware manipulation, real-time critical applications. It is used in device drivers, low-level embedded systems etc.
Assembly language usually consists of three sections,
Data section
To initialize variables and constants, buffer size these values doesn't change at runtime.
bss section
To declare variables
text section
_start
specifies the starting of this section where the actually code is written.
There are various define directives to allocate space for variables for both initialized and uninitialized data.
variable-name define-directive initial-value
Define Directive | Description | Allocated Space |
---|---|---|
DB | Define Byte | 1 byte |
DW | Define Word | 2 bytes |
DD | Define Doubleword | 4 bytes |
DQ | Define Quadword | 8 bytes |
DT | Define Ten Bytes | 10 bytes |
Define Directive | Description |
---|---|
RESB | Reserve a Byte |
RESW | Reserve a Word |
RESD | Reserve a Doubleword |
RESQ | Reserve a Quadword |
REST | Reserve a Ten Bytes |
Constants can be defined using
CONSTANT_NAME EQU regular-exp or value
%assign constant_name value
%define constant_name value
Loops are used to iterate a set of statements for a specific number of times.
mov ECX,n
L1:
;<loop body>
loop L1
where n specifies the no of times loops should iterate.
Procedure is a sub-routine which contains set of statements. Usually procedures are written when multiple calls are required to same set of statements which increases re-usuability and modularity.
procedure_name:
;procedure body
ret