// Binary Search Tree operations in C

#include <stdio.h>
#include <stdlib.h>

struct node {
  int key;
  struct node *left, *right;
};

// Create a node
struct node *newNode(int item) {
  struct node *temp = (struct node *)malloc(sizeof(struct node));
  temp->key = item;
  temp->left = temp->right = NULL;
  return temp;
}

// Inorder Traversal
void inorder(struct node *root) {
  if (root != NULL) {
    // Traverse left
    inorder(root->left);

    // Traverse root
    printf("%d -> ", root->key);

    // Traverse right
    inorder(root->right);
  }
}

// Insert a node
struct node *insert(struct node *node, int key) {
  // Return a new node if the tree is empty
  if (node == NULL) return newNode(key);

  // Traverse to the right place and insert the node
  if (key < node->key)
    node->left = insert(node->left, key);
  else
    node->right = insert(node->right, key);

  return node;
}

// Find the inorder successor
struct node *minValueNode(struct node *node) {
  struct node *current = node;

  // Find the leftmost leaf
  while (current && current->left != NULL)
    current = current->left;

  return current;
}

// Deleting a node
struct node *deleteNode(struct node *root, int key) {
  // Return if the tree is empty
  if (root == NULL) return root;

  // Find the node to be deleted
  if (key < root->key)
    root->left = deleteNode(root->left, key);
  else if (key > root->key)
    root->right = deleteNode(root->right, key);

  else {
    // If the node is with only one child or no child
    if (root->left == NULL) {
      struct node *temp = root->right;
      free(root);
      return temp;
    } else if (root->right == NULL) {
      struct node *temp = root->left;
      free(root);
      return temp;
    }

    // If the node has two children
    struct node *temp = minValueNode(root->right);

    // Place the inorder successor in position of the node to be deleted
    root->key = temp->key;

    // Delete the inorder successor
    root->right = deleteNode(root->right, temp->key);
  }
  return root;
}

// Driver code
int main() {
  struct node *root = NULL;
  root = insert(root, 8);
  root = insert(root, 3);
  root = insert(root, 1);
  root = insert(root, 6);
  root = insert(root, 7);
  root = insert(root, 10);
  root = insert(root, 14);
  root = insert(root, 4);

  printf("Inorder traversal: ");
  inorder(root);

  printf("\nAfter deleting 10\n");
  root = deleteNode(root, 10);
  printf("Inorder traversal: ");
  inorder(root);
} 

C Language online compiler

Write, Run & Share C Language code online using OneCompiler's C online compiler for free. It's one of the robust, feature-rich online compilers for C language, running the latest C version which is C18. Getting started with the OneCompiler's C editor is really simple and pretty fast. The editor shows sample boilerplate code when you choose language as 'C' and start coding!

Read inputs from stdin

OneCompiler's C online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample C program which takes name as input and print your name with hello.

#include <stdio.h>
int main()
{
    char name[50];
    printf("Enter name:");
    scanf("%s", name);
    printf("Hello %s \n" , name );
    return 0;
    
}

About C

C language is one of the most popular general-purpose programming language developed by Dennis Ritchie at Bell laboratories for UNIX operating system. The initial release of C Language was in the year 1972. Most of the desktop operating systems are written in C Language.

Key features:

  • Structured Programming
  • Popular system programming language
  • UNIX, MySQL and Oracle are completely written in C.
  • Supports variety of platforms
  • Efficient and also handle low-level activities.
  • As fast as assembly language and hence used as system development language.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition if-else is used.

if(conditional-expression) {
   // code
} else {
   // code
}

You can also use if-else for nested Ifs and if-else-if ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to if-else-if ladder.

switch(conditional-expression) {    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
...    
    
default:     
 // code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  // code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while(condition) {  
 // code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {
  // code 
} while (condition); 

Arrays

Array is a collection of similar data which is stored in continuous memory addresses. Array values can be fetched using index. Index starts from 0 to size-1.

Syntax

One dimentional Array:

data-type array-name[size];

Two dimensional array:

data-type array-name[size][size];

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity.

Two types of functions are present in C

  1. Library Functions:

Library functions are the in-built functions which are declared in header files like printf(),scanf(),puts(),gets() etc.,

  1. User defined functions:

User defined functions are the ones which are written by the programmer based on the requirement.

How to declare a Function

return_type function_name(parameters);

How to call a Function

function_name (parameters)

How to define a Function

return_type function_name(parameters) {  
  //code
}