#include <stdio.h> #include <stdint.h> #define N_FAST_FORWARD_TABLES 4 #define N_FAST_FORWARD_TABLE_ENTRIES 16 #define CRC16_INIT_STATE 0xFFFFU #define CRC16_POLYNOMIAL 0x1021U #define CRC16_INIT_STATE 0xFFFFU unsigned short ffwTables[N_FAST_FORWARD_TABLES * N_FAST_FORWARD_TABLE_ENTRIES]; unsigned short ffwLutSteps[N_FAST_FORWARD_TABLES] = { 250, 120, 60, 30 }; unsigned short crcTable[256]; uint16_t calc_two_reg_crc16_table256(const uint8_t* msg, const uint32_t len) { uint32_t crc = CRC16_INIT_STATE; const uint8_t *msgEnd = msg + len; while (msg < msgEnd) { // next lined will perform: crc = (crc << 8) ^ crcTable[(crc >> 8) ^ *msg]; // operations are written to guide compiler for a two operands machine uint32_t feedback; uint32_t tableIdx; tableIdx = crc; tableIdx >>= 8U; tableIdx ^= *msg; tableIdx &= 0xffU; feedback = crcTable[tableIdx]; // V850 requires one instruction between load and usage of data crc <<= 8U; crc ^= feedback; // increment message read pointer for next round msg++; } // loop costs 4 cycles (1 cycle cmp + 3 branch) on V850 return ((uint16_t)crc); } uint16_t calc_two_reg_crc16_fast_forward(uint16_t ffwTable[16], uint16_t crcIn) { int32_t idx; uint32_t crcOut = 0U; for (idx = 15; idx >= 0; idx--) { // running backwards to reduce V850 loop overhead if (((crcIn >> (uint32_t)idx) & 0x1U) != 0U) { crcOut ^= ffwTable[idx]; } } return ((uint16_t)crcOut); } uint16_t calc_two_reg_crc16_forward(uint32_t crc, uint32_t len) { while (len > 0U) { // next lined will perform: crc = (crc << 8) ^ crcTable[(crc >> 8)]; // operations are written to guide compiler for a two operands machine uint32_t feedback; uint32_t tableIdx; tableIdx = crc; tableIdx >>= 8U; tableIdx &= 0xffU; feedback = crcTable[tableIdx]; // V850 requires one instruction between load and usage of data crc <<= 8U; crc ^= feedback; len--; } // loop costs 4 cycles (1 cycle cmp + 3 branch) on V850 return (uint16_t)crc; } uint16_t calc_spi_frame_crc(const uint8_t* pFrame, uint32_t frameLen, const uint32_t usedLen) { uint16_t crcState = 0; if (frameLen >= usedLen) { int32_t idx; uint16_t * pffwTable = ffwTables; crcState = calc_two_reg_crc16_table256(pFrame, usedLen); frameLen -= usedLen; for (idx = 0; idx < N_FAST_FORWARD_TABLES; idx++) { uint32_t lutSteps = ffwLutSteps[idx]; if (lutSteps <= frameLen) { crcState = calc_two_reg_crc16_fast_forward(&pffwTable[idx * N_FAST_FORWARD_TABLE_ENTRIES], crcState); frameLen -= lutSteps; } } crcState = calc_two_reg_crc16_forward((uint32_t)crcState, frameLen); } else { // TODO: implement platform specific error handling } return ~crcState; } static inline void addCRC(const uint32_t usedSize, const uint32_t size, uint8_t* const pMOSIframe) { uint16_t crc; crc = calc_spi_frame_crc(pMOSIframe, size - 2u, usedSize); //typecasting from higher to narrower range is fine here since using only narrow bit range. pMOSIframe[size - 1u] = (uint8_t)crc & 0xffu; pMOSIframe[size - 2u] = (uint8_t)(crc >> 8u); } void two_reg_crc16FastForwardTableGen(uint16_t table[16], uint32_t n_bytes) { uint16_t bitIdx; for (bitIdx = 0; bitIdx < 16U; bitIdx++) { uint32_t crcState; crcState = (uint32_t)((uint32_t)1u << ((uint32_t)bitIdx)); table[bitIdx] = calc_two_reg_crc16_forward(crcState, n_bytes); } } uint16_t calcByteCrc16Bitwise(uint32_t crc, uint32_t inByte) { uint32_t poly = CRC16_POLYNOMIAL; uint32_t idx; uint32_t bitMask = 0x10000U; inByte = inByte << 8U; for (idx = 0U; idx < 8U; idx++) { crc = (crc << 1U); inByte = (inByte << 1U); if (((crc ^ inByte) & bitMask) != 0U) { crc = crc ^ poly; } } return ((uint16_t)crc); } void crc16Table256Gen(void) { uint32_t idx; for (idx = 0; idx < 256U; idx++) { crcTable[idx] = calcByteCrc16Bitwise(idx << 8U, 0); } } void crc16_init(void) { int32_t idx; crc16Table256Gen(); for (idx = 0; idx < N_FAST_FORWARD_TABLES; idx++) { two_reg_crc16FastForwardTableGen(&ffwTables[idx * N_FAST_FORWARD_TABLE_ENTRIES], ffwLutSteps[idx]); } } unsigned char buff[256] = { 0xB6,0x49,0xB6,0x93,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; int main(int argc, char **argv) { crc16_init(); addCRC(0, 256, buff); printf("CRC bytes [%x] [%x]", buff[254], buff[255]); return 0; }
Write, Run & Share C Language code online using OneCompiler's C online compiler for free. It's one of the robust, feature-rich online compilers for C language, running the latest C version which is C18. Getting started with the OneCompiler's C editor is really simple and pretty fast. The editor shows sample boilerplate code when you choose language as 'C' and start coding!
OneCompiler's C online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample C program which takes name as input and print your name with hello.
#include <stdio.h>
int main()
{
char name[50];
printf("Enter name:");
scanf("%s", name);
printf("Hello %s \n" , name );
return 0;
}
C language is one of the most popular general-purpose programming language developed by Dennis Ritchie at Bell laboratories for UNIX operating system. The initial release of C Language was in the year 1972. Most of the desktop operating systems are written in C Language.
When ever you want to perform a set of operations based on a condition if-else
is used.
if(conditional-expression) {
// code
} else {
// code
}
You can also use if-else for nested Ifs and if-else-if ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to if-else-if ladder.
switch(conditional-expression) {
case value1:
// code
break; // optional
case value2:
// code
break; // optional
...
default:
// code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
// code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while(condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Array is a collection of similar data which is stored in continuous memory addresses. Array values can be fetched using index. Index starts from 0 to size-1.
data-type array-name[size];
data-type array-name[size][size];
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity.
Two types of functions are present in C
Library functions are the in-built functions which are declared in header files like printf(),scanf(),puts(),gets() etc.,
User defined functions are the ones which are written by the programmer based on the requirement.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
//code
}