#include <linux/delay.h> #include <linux/err.h> #include <linux/fb.h> #include <linux/i2c.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <linux/pm.h> #include <drm/drm_crtc.h> #include <drm/drm_device.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #define RPI_DSI_DRIVER_NAME "rpi-ts-dsi" /* I2C registers of the Atmel microcontroller. */ enum REG_ADDR { REG_ID = 0x80, REG_PORTA, /* BIT(2) for horizontal flip, BIT(3) for vertical flip */ REG_PORTB, REG_PORTC, REG_PORTD, REG_POWERON, REG_PWM, REG_DDRA, REG_DDRB, REG_DDRC, REG_DDRD, REG_TEST, REG_WR_ADDRL, REG_WR_ADDRH, REG_READH, REG_READL, REG_WRITEH, REG_WRITEL, REG_ID2, }; /* DSI D-PHY Layer Registers */ #define D0W_DPHYCONTTX 0x0004 #define CLW_DPHYCONTRX 0x0020 #define D0W_DPHYCONTRX 0x0024 #define D1W_DPHYCONTRX 0x0028 #define COM_DPHYCONTRX 0x0038 #define CLW_CNTRL 0x0040 #define D0W_CNTRL 0x0044 #define D1W_CNTRL 0x0048 #define DFTMODE_CNTRL 0x0054 /* DSI PPI Layer Registers */ #define PPI_STARTPPI 0x0104 #define PPI_BUSYPPI 0x0108 #define PPI_LINEINITCNT 0x0110 #define PPI_LPTXTIMECNT 0x0114 #define PPI_CLS_ATMR 0x0140 #define PPI_D0S_ATMR 0x0144 #define PPI_D1S_ATMR 0x0148 #define PPI_D0S_CLRSIPOCOUNT 0x0164 #define PPI_D1S_CLRSIPOCOUNT 0x0168 #define CLS_PRE 0x0180 #define D0S_PRE 0x0184 #define D1S_PRE 0x0188 #define CLS_PREP 0x01A0 #define D0S_PREP 0x01A4 #define D1S_PREP 0x01A8 #define CLS_ZERO 0x01C0 #define D0S_ZERO 0x01C4 #define D1S_ZERO 0x01C8 #define PPI_CLRFLG 0x01E0 #define PPI_CLRSIPO 0x01E4 #define HSTIMEOUT 0x01F0 #define HSTIMEOUTENABLE 0x01F4 /* DSI Protocol Layer Registers */ #define DSI_STARTDSI 0x0204 #define DSI_BUSYDSI 0x0208 #define DSI_LANEENABLE 0x0210 # define DSI_LANEENABLE_CLOCK BIT(0) # define DSI_LANEENABLE_D0 BIT(1) # define DSI_LANEENABLE_D1 BIT(2) #define DSI_LANESTATUS0 0x0214 #define DSI_LANESTATUS1 0x0218 #define DSI_INTSTATUS 0x0220 #define DSI_INTMASK 0x0224 #define DSI_INTCLR 0x0228 #define DSI_LPTXTO 0x0230 #define DSI_MODE 0x0260 #define DSI_PAYLOAD0 0x0268 #define DSI_PAYLOAD1 0x026C #define DSI_SHORTPKTDAT 0x0270 #define DSI_SHORTPKTREQ 0x0274 #define DSI_BTASTA 0x0278 #define DSI_BTACLR 0x027C /* DSI General Registers */ #define DSIERRCNT 0x0300 #define DSISIGMOD 0x0304 /* DSI Application Layer Registers */ #define APLCTRL 0x0400 #define APLSTAT 0x0404 #define APLERR 0x0408 #define PWRMOD 0x040C #define RDPKTLN 0x0410 #define PXLFMT 0x0414 #define MEMWRCMD 0x0418 /* LCDC/DPI Host Registers */ #define LCDCTRL 0x0420 #define HSR 0x0424 #define HDISPR 0x0428 #define VSR 0x042C #define VDISPR 0x0430 #define VFUEN 0x0434 /* DBI-B Host Registers */ #define DBIBCTRL 0x0440 /* SPI Master Registers */ #define SPICMR 0x0450 #define SPITCR 0x0454 /* System Controller Registers */ #define SYSSTAT 0x0460 #define SYSCTRL 0x0464 #define SYSPLL1 0x0468 #define SYSPLL2 0x046C #define SYSPLL3 0x0470 #define SYSPMCTRL 0x047C /* GPIO Registers */ #define GPIOC 0x0480 #define GPIOO 0x0484 #define GPIOI 0x0488 /* I2C Registers */ #define I2CCLKCTRL 0x0490 /* Chip/Rev Registers */ #define IDREG 0x04A0 /* Debug Registers */ #define WCMDQUEUE 0x0500 #define RCMDQUEUE 0x0504 struct rpi_touchscreen { struct drm_panel base; struct mipi_dsi_device *dsi; struct i2c_client *i2c; }; static const struct drm_display_mode rpi_touchscreen_modes[] = { { /* Modeline comes from the Raspberry Pi firmware, with HFP=1 * plugged in and clock re-computed from that. */ .clock = 25979400 / 1000, .hdisplay = 800, .hsync_start = 800 + 1, .hsync_end = 800 + 1 + 2, .htotal = 800 + 1 + 2 + 46, .vdisplay = 480, .vsync_start = 480 + 7, .vsync_end = 480 + 7 + 2, .vtotal = 480 + 7 + 2 + 21, }, }; static struct rpi_touchscreen *panel_to_ts(struct drm_panel *panel) { return container_of(panel, struct rpi_touchscreen, base); } static int rpi_touchscreen_i2c_read(struct rpi_touchscreen *ts, u8 reg) { return i2c_smbus_read_byte_data(ts->i2c, reg); } static void rpi_touchscreen_i2c_write(struct rpi_touchscreen *ts, u8 reg, u8 val) { int ret; ret = i2c_smbus_write_byte_data(ts->i2c, reg, val); if (ret) dev_err(&ts->i2c->dev, "I2C write failed: %d\n", ret); } static int rpi_touchscreen_write(struct rpi_touchscreen *ts, u16 reg, u32 val) { u8 msg[] = { reg, reg >> 8, val, val >> 8, val >> 16, val >> 24, }; mipi_dsi_generic_write(ts->dsi, msg, sizeof(msg)); return 0; } static int rpi_touchscreen_disable(struct drm_panel *panel) { struct rpi_touchscreen *ts = panel_to_ts(panel); rpi_touchscreen_i2c_write(ts, REG_PWM, 0); rpi_touchscreen_i2c_write(ts, REG_POWERON, 0); udelay(1); return 0; } static int rpi_touchscreen_noop(struct drm_panel *panel) { return 0; } static int rpi_touchscreen_prepare(struct drm_panel *panel) { struct rpi_touchscreen *ts = panel_to_ts(panel); int i; rpi_touchscreen_i2c_write(ts, REG_POWERON, 1); /* Wait for nPWRDWN to go low to indicate poweron is done. */ for (i = 0; i < 100; i++) { if (rpi_touchscreen_i2c_read(ts, REG_PORTB) & 1) break; } rpi_touchscreen_write(ts, DSI_LANEENABLE, DSI_LANEENABLE_CLOCK | DSI_LANEENABLE_D0); rpi_touchscreen_write(ts, PPI_D0S_CLRSIPOCOUNT, 0x05); rpi_touchscreen_write(ts, PPI_D1S_CLRSIPOCOUNT, 0x05); rpi_touchscreen_write(ts, PPI_D0S_ATMR, 0x00); rpi_touchscreen_write(ts, PPI_D1S_ATMR, 0x00); rpi_touchscreen_write(ts, PPI_LPTXTIMECNT, 0x03); rpi_touchscreen_write(ts, SPICMR, 0x00); rpi_touchscreen_write(ts, LCDCTRL, 0x00100150); rpi_touchscreen_write(ts, SYSCTRL, 0x040f); msleep(100); rpi_touchscreen_write(ts, PPI_STARTPPI, 0x01); rpi_touchscreen_write(ts, DSI_STARTDSI, 0x01); msleep(100); return 0; } static int rpi_touchscreen_enable(struct drm_panel *panel) { struct rpi_touchscreen *ts = panel_to_ts(panel); /* Turn on the backlight. */ rpi_touchscreen_i2c_write(ts, REG_PWM, 255); /* Default to the same orientation as the closed source * firmware used for the panel. Runtime rotation * configuration will be supported using VC4's plane * orientation bits. */ rpi_touchscreen_i2c_write(ts, REG_PORTA, BIT(2)); return 0; } static int rpi_touchscreen_get_modes(struct drm_panel *panel, struct drm_connector *connector) { unsigned int i, num = 0; static const u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24; for (i = 0; i < ARRAY_SIZE(rpi_touchscreen_modes); i++) { const struct drm_display_mode *m = &rpi_touchscreen_modes[i]; struct drm_display_mode *mode; mode = drm_mode_duplicate(connector->dev, m); if (!mode) { dev_err(panel->dev, "failed to add mode %ux%u@%u\n", m->hdisplay, m->vdisplay, drm_mode_vrefresh(m)); continue; } mode->type |= DRM_MODE_TYPE_DRIVER; if (i == 0) mode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_set_name(mode); drm_mode_probed_add(connector, mode); num++; } connector->display_info.bpc = 8; connector->display_info.width_mm = 154; connector->display_info.height_mm = 86; drm_display_info_set_bus_formats(&connector->display_info, &bus_format, 1); return num; } static const struct drm_panel_funcs rpi_touchscreen_funcs = { .disable = rpi_touchscreen_disable, .unprepare = rpi_touchscreen_noop, .prepare = rpi_touchscreen_prepare, .enable = rpi_touchscreen_enable, .get_modes = rpi_touchscreen_get_modes, }; static int rpi_touchscreen_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct device *dev = &i2c->dev; struct rpi_touchscreen *ts; struct device_node *endpoint, *dsi_host_node; struct mipi_dsi_host *host; int ver; struct mipi_dsi_device_info info = { .type = RPI_DSI_DRIVER_NAME, .channel = 0, .node = NULL, }; ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; i2c_set_clientdata(i2c, ts); ts->i2c = i2c; ver = rpi_touchscreen_i2c_read(ts, REG_ID); if (ver < 0) { dev_err(dev, "Atmel I2C read failed: %d\n", ver); return -ENODEV; } switch (ver) { case 0xde: /* ver 1 */ case 0xc3: /* ver 2 */ break; default: dev_err(dev, "Unknown Atmel firmware revision: 0x%02x\n", ver); return -ENODEV; } /* Turn off at boot, so we can cleanly sequence powering on. */ rpi_touchscreen_i2c_write(ts, REG_POWERON, 0); /* Look up the DSI host. It needs to probe before we do. */ endpoint = of_graph_get_next_endpoint(dev->of_node, NULL); if (!endpoint) return -ENODEV; dsi_host_node = of_graph_get_remote_port_parent(endpoint); if (!dsi_host_node) goto error; host = of_find_mipi_dsi_host_by_node(dsi_host_node); of_node_put(dsi_host_node); if (!host) { of_node_put(endpoint); return -EPROBE_DEFER; } info.node = of_graph_get_remote_port(endpoint); if (!info.node) goto error; of_node_put(endpoint); ts->dsi = mipi_dsi_device_register_full(host, &info); if (IS_ERR(ts->dsi)) { dev_err(dev, "DSI device registration failed: %ld\n", PTR_ERR(ts->dsi)); return PTR_ERR(ts->dsi); } drm_panel_init(&ts->base, dev, &rpi_touchscreen_funcs, DRM_MODE_CONNECTOR_DSI); /* This appears last, as it's what will unblock the DSI host * driver's component bind function. */ drm_panel_add(&ts->base); return 0; error: of_node_put(endpoint); return -ENODEV; } static void rpi_touchscreen_remove(struct i2c_client *i2c) { struct rpi_touchscreen *ts = i2c_get_clientdata(i2c); mipi_dsi_detach(ts->dsi); drm_panel_remove(&ts->base); mipi_dsi_device_unregister(ts->dsi); } static int rpi_touchscreen_dsi_probe(struct mipi_dsi_device *dsi) { int ret; dsi->mode_flags = (MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE | MIPI_DSI_MODE_LPM); dsi->format = MIPI_DSI_FMT_RGB888; dsi->lanes = 1; ret = mipi_dsi_attach(dsi); if (ret) dev_err(&dsi->dev, "failed to attach dsi to host: %d\n", ret); return ret; } static struct mipi_dsi_driver rpi_touchscreen_dsi_driver = { .driver.name = RPI_DSI_DRIVER_NAME, .probe = rpi_touchscreen_dsi_probe, }; static const struct of_device_id rpi_touchscreen_of_ids[] = { { .compatible = "raspberrypi,7inch-touchscreen-panel" }, { } /* sentinel */ }; MODULE_DEVICE_TABLE(of, rpi_touchscreen_of_ids); static struct i2c_driver rpi_touchscreen_driver = { .driver = { .name = "rpi_touchscreen", .of_match_table = rpi_touchscreen_of_ids, }, .probe = rpi_touchscreen_probe, .remove = rpi_touchscreen_remove, }; static int __init rpi_touchscreen_init(void) { mipi_dsi_driver_register(&rpi_touchscreen_dsi_driver); return i2c_add_driver(&rpi_touchscreen_driver); } module_init(rpi_touchscreen_init); static void __exit rpi_touchscreen_exit(void) { i2c_del_driver(&rpi_touchscreen_driver); mipi_dsi_driver_unregister(&rpi_touchscreen_dsi_driver); } module_exit(rpi_touchscreen_exit); MODULE_AUTHOR("Eric Anholt <[email protected]>"); MODULE_DESCRIPTION("Raspberry Pi 7-inch touchscreen driver"); MODULE_LICENSE("GPL v2");
Write, Run & Share C Language code online using OneCompiler's C online compiler for free. It's one of the robust, feature-rich online compilers for C language, running the latest C version which is C18. Getting started with the OneCompiler's C editor is really simple and pretty fast. The editor shows sample boilerplate code when you choose language as 'C' and start coding!
OneCompiler's C online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample C program which takes name as input and print your name with hello.
#include <stdio.h>
int main()
{
char name[50];
printf("Enter name:");
scanf("%s", name);
printf("Hello %s \n" , name );
return 0;
}
C language is one of the most popular general-purpose programming language developed by Dennis Ritchie at Bell laboratories for UNIX operating system. The initial release of C Language was in the year 1972. Most of the desktop operating systems are written in C Language.
When ever you want to perform a set of operations based on a condition if-else
is used.
if(conditional-expression) {
// code
} else {
// code
}
You can also use if-else for nested Ifs and if-else-if ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to if-else-if ladder.
switch(conditional-expression) {
case value1:
// code
break; // optional
case value2:
// code
break; // optional
...
default:
// code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
// code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while(condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Array is a collection of similar data which is stored in continuous memory addresses. Array values can be fetched using index. Index starts from 0 to size-1.
data-type array-name[size];
data-type array-name[size][size];
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity.
Two types of functions are present in C
Library functions are the in-built functions which are declared in header files like printf(),scanf(),puts(),gets() etc.,
User defined functions are the ones which are written by the programmer based on the requirement.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
//code
}