#include <stdio.h>
#include <stdlib.h>
#define SIZE 40

struct queue {
  int items[SIZE];
  int front;
  int rear;
};

struct queue* createQueue();
void enqueue(struct queue* q, int);
int dequeue(struct queue* q);
void display(struct queue* q);
int isEmpty(struct queue* q);
void printQueue(struct queue* q);

struct node {
  int vertex;
  struct node* next;
};

struct node* createNode(int);

struct Graph {
  int numVertices;
  struct node** adjLists;
  int* visited;
};

// BFS algorithm
void bfs(struct Graph* graph, int startVertex) {
  struct queue* q = createQueue();

  graph->visited[startVertex] = 1;
  enqueue(q, startVertex);

  while (!isEmpty(q)) {
    printQueue(q);
    int currentVertex = dequeue(q);
    printf("Visited %d\n", currentVertex);

    struct node* temp = graph->adjLists[currentVertex];

    while (temp) {
      int adjVertex = temp->vertex;

      if (graph->visited[adjVertex] == 0) {
        graph->visited[adjVertex] = 1;
        enqueue(q, adjVertex);
      }
      temp = temp->next;
    }
  }
}

// Creating a node
struct node* createNode(int v) {
  struct node* newNode = malloc(sizeof(struct node));
  newNode->vertex = v;
  newNode->next = NULL;
  return newNode;
}

// Creating a graph
struct Graph* createGraph(int vertices) {
  struct Graph* graph = malloc(sizeof(struct Graph));
  graph->numVertices = vertices;

  graph->adjLists = malloc(vertices * sizeof(struct node*));
  graph->visited = malloc(vertices * sizeof(int));

  int i;
  for (i = 0; i < vertices; i++) {
    graph->adjLists[i] = NULL;
    graph->visited[i] = 0;
  }

  return graph;
}

// Add edge
void addEdge(struct Graph* graph, int src, int dest) {
  // Add edge from src to dest
  struct node* newNode = createNode(dest);
  newNode->next = graph->adjLists[src];
  graph->adjLists[src] = newNode;

  // Add edge from dest to src
  newNode = createNode(src);
  newNode->next = graph->adjLists[dest];
  graph->adjLists[dest] = newNode;
}

// Create a queue
struct queue* createQueue() {
  struct queue* q = malloc(sizeof(struct queue));
  q->front = -1;
  q->rear = -1;
  return q;
}

// Check if the queue is empty
int isEmpty(struct queue* q) {
  if (q->rear == -1)
    return 1;
  else
    return 0;
}

// Adding elements into queue
void enqueue(struct queue* q, int value) {
  if (q->rear == SIZE - 1)
    printf("\nQueue is Full!!");
  else {
    if (q->front == -1)
      q->front = 0;
    q->rear++;
    q->items[q->rear] = value;
  }
}

// Removing elements from queue
int dequeue(struct queue* q) {
  int item;
  if (isEmpty(q)) {
    printf("Queue is empty");
    item = -1;
  } else {
    item = q->items[q->front];
    q->front++;
    if (q->front > q->rear) {
      printf("Resetting queue ");
      q->front = q->rear = -1;
    }
  }
  return item;
}

// Print the queue
void printQueue(struct queue* q) {
  int i = q->front;

  if (isEmpty(q)) {
    printf("Queue is empty");
  } else {
    printf("\nQueue contains \n");
    for (i = q->front; i < q->rear + 1; i++) {
      printf("%d ", q->items[i]);
    }
  }
}

int main() {
  struct Graph* graph = createGraph(6);
  addEdge(graph, 0, 1);
  addEdge(graph, 0, 2);
  addEdge(graph, 1, 2);
  addEdge(graph, 1, 4);
  addEdge(graph, 1, 3);
  addEdge(graph, 2, 4);
  addEdge(graph, 3, 4);

  bfs(graph, 0);

  return 0;
}
 

C Language online compiler

Write, Run & Share C Language code online using OneCompiler's C online compiler for free. It's one of the robust, feature-rich online compilers for C language, running the latest C version which is C18. Getting started with the OneCompiler's C editor is really simple and pretty fast. The editor shows sample boilerplate code when you choose language as 'C' and start coding!

Read inputs from stdin

OneCompiler's C online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample C program which takes name as input and print your name with hello.

#include <stdio.h>
int main()
{
    char name[50];
    printf("Enter name:");
    scanf("%s", name);
    printf("Hello %s \n" , name );
    return 0;
    
}

About C

C language is one of the most popular general-purpose programming language developed by Dennis Ritchie at Bell laboratories for UNIX operating system. The initial release of C Language was in the year 1972. Most of the desktop operating systems are written in C Language.

Key features:

  • Structured Programming
  • Popular system programming language
  • UNIX, MySQL and Oracle are completely written in C.
  • Supports variety of platforms
  • Efficient and also handle low-level activities.
  • As fast as assembly language and hence used as system development language.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition if-else is used.

if(conditional-expression) {
   // code
} else {
   // code
}

You can also use if-else for nested Ifs and if-else-if ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to if-else-if ladder.

switch(conditional-expression) {    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
...    
    
default:     
 // code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  // code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while(condition) {  
 // code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {
  // code 
} while (condition); 

Arrays

Array is a collection of similar data which is stored in continuous memory addresses. Array values can be fetched using index. Index starts from 0 to size-1.

Syntax

One dimentional Array:

data-type array-name[size];

Two dimensional array:

data-type array-name[size][size];

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity.

Two types of functions are present in C

  1. Library Functions:

Library functions are the in-built functions which are declared in header files like printf(),scanf(),puts(),gets() etc.,

  1. User defined functions:

User defined functions are the ones which are written by the programmer based on the requirement.

How to declare a Function

return_type function_name(parameters);

How to call a Function

function_name (parameters)

How to define a Function

return_type function_name(parameters) {  
  //code
}