//C++ program for leftist heap / leftist tree
#include <iostream>
using namespace std;
// Node Class Declaration
class LeftistNode
{
public:
int element;
LeftistNode *left;
LeftistNode *right;
int dist;
LeftistNode(int & element, LeftistNode *lt = NULL,
LeftistNode *rt = NULL, int np = 0)
{
this->element = element;
right = rt;
left = lt,
dist = np;
}
};
//Class Declaration
class LeftistHeap
{
public:
LeftistHeap();
LeftistHeap(LeftistHeap &rhs);
~LeftistHeap();
bool isEmpty();
bool isFull();
int &findMin();
void Insert(int &x);
void deleteMin();
void deleteMin(int &minItem);
void makeEmpty();
void Merge(LeftistHeap &rhs);
LeftistHeap & operator =(LeftistHeap &rhs);
private:
LeftistNode *root;
LeftistNode *Merge(LeftistNode *h1,
LeftistNode *h2);
LeftistNode *Merge1(LeftistNode *h1,
LeftistNode *h2);
void swapChildren(LeftistNode * t);
void reclaimMemory(LeftistNode * t);
LeftistNode *clone(LeftistNode *t);
};
// Construct the leftist heap
LeftistHeap::LeftistHeap()
{
root = NULL;
}
// Copy constructor.
LeftistHeap::LeftistHeap(LeftistHeap &rhs)
{
root = NULL;
*this = rhs;
}
// Destruct the leftist heap
LeftistHeap::~LeftistHeap()
{
makeEmpty( );
}
/* Merge rhs into the priority queue.
rhs becomes empty. rhs must be different
from this.*/
void LeftistHeap::Merge(LeftistHeap &rhs)
{
if (this == &rhs)
return;
root = Merge(root, rhs.root);
rhs.root = NULL;
}
/* Internal method to merge two roots.
Deals with deviant cases and calls recursive Merge1.*/
LeftistNode *LeftistHeap::Merge(LeftistNode * h1,
LeftistNode * h2)
{
if (h1 == NULL)
return h2;
if (h2 == NULL)
return h1;
if (h1->element < h2->element)
return Merge1(h1, h2);
else
return Merge1(h2, h1);
}
/* Internal method to merge two roots.
Assumes trees are not empty, and h1's root contains
smallest item.*/
LeftistNode *LeftistHeap::Merge1(LeftistNode * h1,
LeftistNode * h2)
{
if (h1->left == NULL)
h1->left = h2;
else
{
h1->right = Merge(h1->right, h2);
if (h1->left->dist < h1->right->dist)
swapChildren(h1);
h1->dist = h1->right->dist + 1;
}
return h1;
}
// Swaps t's two children.
void LeftistHeap::swapChildren(LeftistNode * t)
{
LeftistNode *tmp = t->left;
t->left = t->right;
t->right = tmp;
}
/* Insert item x into the priority queue, maintaining
heap order.*/
void LeftistHeap::Insert(int &x)
{
root = Merge(new LeftistNode(x), root);
}
/* Find the smallest item in the priority queue.
Return the smallest item, or throw Underflow if empty.*/
int &LeftistHeap::findMin()
{
return root->element;
}
/* Remove the smallest item from the priority queue.
Throws Underflow if empty.*/
void LeftistHeap::deleteMin()
{
LeftistNode *oldRoot = root;
root = Merge(root->left, root->right);
delete oldRoot;
}
/* Remove the smallest item from the priority queue.
Pass back the smallest item, or throw Underflow if empty.*/
void LeftistHeap::deleteMin(int &minItem)
{
if (isEmpty())
{
cout<<"Heap is Empty"<<endl;
return;
}
minItem = findMin();
deleteMin();
}
/* Test if the priority queue is logically empty.
Returns true if empty, false otherwise*/
bool LeftistHeap::isEmpty()
{
return root == NULL;
}
/* Test if the priority queue is logically full.
Returns false in this implementation.*/
bool LeftistHeap::isFull()
{
return false;
}
// Make the priority queue logically empty
void LeftistHeap::makeEmpty()
{
reclaimMemory(root);
root = NULL;
}
// Deep copy
LeftistHeap &LeftistHeap::operator =(LeftistHeap & rhs)
{
if (this != &rhs)
{
makeEmpty();
root = clone(rhs.root);
}
return *this;
}
// Internal method to make the tree empty.
void LeftistHeap::reclaimMemory(LeftistNode * t)
{
if (t != NULL)
{
reclaimMemory(t->left);
reclaimMemory(t->right);
delete t;
}
}
// Internal method to clone subtree.
LeftistNode *LeftistHeap::clone(LeftistNode * t)
{
if (t == NULL)
return NULL;
else
return new LeftistNode(t->element, clone(t->left),
clone(t->right), t->dist);
}
//Driver program
int main()
{
LeftistHeap h;
LeftistHeap h1;
LeftistHeap h2;
int x;
int arr[]= {1, 5, 7, 10, 15};
int arr1[]= {22, 75};
h.Insert(arr[0]);
h.Insert(arr[1]);
h.Insert(arr[2]);
h.Insert(arr[3]);
h.Insert(arr[4]);
h1.Insert(arr1[0]);
h1.Insert(arr1[1]);
h.deleteMin(x);
cout<< x <<endl;
h1.deleteMin(x);
cout<< x <<endl;
h.Merge(h1);
h2 = h;
h2.deleteMin(x);
cout<< x << endl;
return 0;
}
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}