// C++ program for implementation of RR scheduling
#include<iostream>
using namespace std;
 
// Function to find the waiting time for all processes
void findWaitingTime(int processes[], int n, int bt[], int wt[], int quantum)
{
    // Make a copy of burst times bt[] to store remaining burst times.
    int rem_bt[n];
    for (int i = 0 ; i < n ; i++)
        rem_bt[i] = bt[i];
 
    int t = 0; // Current time
 
    // Keep traversing processes in round robin manner
    // until all of them are not done.
    while (1)
    {
        bool done = true;
 
        // Traverse all processes one by one repeatedly
        for (int i = 0 ; i < n; i++)
        {
            // If burst time of a process is greater than 0
            // then only need to process further
            if (rem_bt[i] > 0)
            {
                done = false; // There is a pending process
 
                if (rem_bt[i] > quantum)
                {
                    // Increase the value of t i.e. shows
                    // how much time a process has been processed
                    t += quantum;
 
                    // Decrease the burst_time of current process
                    // by quantum
                    rem_bt[i] -= quantum;
                }
 
                // If burst time is smaller than or equal to
                // quantum. Last cycle for this process
                else
                {
                    // Increase the value of t i.e. shows
                    // how much time a process has been processed
                    t = t + rem_bt[i];
 
                    // Waiting time is current time minus time
                    // used by this process
                    wt[i] = t - bt[i];
 
                    // As the process gets fully executed
                    // make its remaining burst time = 0
                    rem_bt[i] = 0;
                }
            }
        }
 
        // If all processes are done
        if (done == true)
        break;
    }
}
 
// Function to calculate turn around time
void findTurnAroundTime(int processes[], int n,
                        int bt[], int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int i = 0; i < n ; i++)
        tat[i] = bt[i] + wt[i];
}
 
// Function to calculate average time
void findavgTime(int processes[], int n, int bt[], int quantum)
{
    int wt[n], tat[n], total_wt = 0, total_tat = 0;
 
    // Function to find waiting time of all processes
    findWaitingTime(processes, n, bt, wt, quantum);
 
    // Function to find turn around time for all processes
    findTurnAroundTime(processes, n, bt, wt, tat);
    //Show quantum
    cout<<"Time quantum = "<<quantum<<endl;
    // Display processes along with all details
    cout << "Processes "<< " Burst time "<< " Waiting time " << " Turn around time\n";
 
    // Calculate total waiting time and total turn
    // around time
    for (int i=0; i<n; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << " " << i+1 << "\t\t" << bt[i] <<"\t "
            << wt[i] <<"\t\t " << tat[i] <<endl;
    }
 
    cout << "Average waiting time = "
        << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
        << (float)total_tat / (float)n;
}
 
// Driver code
int main()
{
    // process id's
    int processes[] = { 1, 2, 3,4};
    int n = sizeof processes / sizeof processes[0];
 
    // Burst time of all processes
    int burst_time[] = {8, 4, 3, 9};
 
    // Time quantum
    int quantum = 3;
    findavgTime(processes, n, burst_time, quantum);
    return 0;
} 

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}