// Include standard headers
#include <stdio.h>
#include <stdlib.h>
// Include GLEW. Always include it before gl.h and glfw3.h, since it's a bit magic.
#include <GL/glew.h>
// Include GLFW
#include <GLFW/glfw3.h>
// Include GLM
#include <glm/glm.hpp>
using namespace glm;
int main(){
  // Initialise GLFW
glewExperimental = true; // Needed for core profile
if( !glfwInit() )
{
    fprintf( stderr, "Failed to initialize GLFW\n" );
    return -1;
}

glfwWindowHint(GLFW_SAMPLES, 4); // 4x antialiasing
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // We want OpenGL 3.3
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // We don't want the old OpenGL 

// Open a window and create its OpenGL context
GLFWwindow* window; // (In the accompanying source code, this variable is global for simplicity)
window = glfwCreateWindow( 1024, 768, "Tutorial 01", NULL, NULL);
if( window == NULL ){
    fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
    glfwTerminate();
    return -1;
}
glfwMakeContextCurrent(window); // Initialize GLEW
glewExperimental=true; // Needed in core profile
if (glewInit() != GLEW_OK) {
    fprintf(stderr, "Failed to initialize GLEW\n");
    return -1;
}

// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);

do{
    // Clear the screen. It's not mentioned before Tutorial 02, but it can cause flickering, so it's there nonetheless.
    glClear( GL_COLOR_BUFFER_BIT );

    // Draw nothing, see you in tutorial 2 !

    // Swap buffers
    glfwSwapBuffers(window);
    glfwPollEvents();

} // Check if the ESC key was pressed or the window was closed
while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
       glfwWindowShouldClose(window) == 0 );
       
}        

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}