#include <iostream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <random>
#include <chrono>

class stop_watch{
  public:
  static auto timer(){
    return std::chrono::high_resolution_clock::now();
  }
  static void display_time(const std::chrono::high_resolution_clock::time_point end, const std::chrono::high_resolution_clock::time_point start){
    std::cout<< std::chrono::duration_cast<std::chrono::microseconds>(end-start).count() << "\n";
  }
};




template <typename T>
T get_median(const std::vector<T>& data) {

    int median = data.size() / 2;
    return data[median];
}

template <typename T>
void sort_array(std::vector<T>& data, int axis) {

    std::sort(data.begin(), data.end(), [&](T& a, T& b) {return (a[axis] < b[axis]); });

}

template <typename T>
struct Node {
    T data;
    Node* L;
    Node* R;
    Node* P;

};

template <typename T>
class kd_tree {
private:
    Node<T>* Root;
    int m_size;
    std::vector<Node<T>*> visited_nodes;
    Node<T>* stoppage;
public:
    kd_tree(const int& size) :Root(nullptr), m_size(size) {}
    int get_axis(int axis){
      return axis%(m_size);
    }
    void add_to_tree(const T& val) {
      static int counter = 0;
      counter++;
      
      
        if (Root == nullptr) {
            Root = new Node<T>();
            Root->data = val;
            Root->L = Root->R = nullptr;
            stoppage = new Node<T>();
            Root->P = stoppage;
        }
        else {
            // 3d 
            int axis = 0;
            Node<T>* temp = new Node<T>();
            temp->data = val;
            temp->P = temp->L = temp->R = nullptr;
            Node<T>* current = Root;
            while (current->R != nullptr || current->L != nullptr) {
                if (temp->data[get_axis(axis)] <= current->data[get_axis(axis)] && current->L != nullptr) {
                    current = current->L;
                    axis++;

                }
                else if (temp->data[get_axis(axis)] <= current->data[get_axis(axis)] && current->L == nullptr) {
                    current->L = temp;
                    temp->P = current;
                    temp->R = temp->L = nullptr;
                    break;
                }
                else if (temp->data[get_axis(axis)] > current->data[get_axis(axis)] && current->R != nullptr) {
                    current = current->R;
                    axis++;
                }
                else if (temp->data[get_axis(axis)] > current->data[get_axis(axis)] && current->R == nullptr) {
  
                    current->R = temp;
                    temp->P = current;
                    temp->R = temp->L = nullptr;
                    break;
                }

            }
            if (current->L == nullptr && current->R == nullptr) {
              
                if (temp->data[get_axis(axis)] <= current->data[get_axis(axis)]) {
                    current->L = temp;
                    temp->P = current;
                    temp->R = temp->L = nullptr;
                }
                else {
                    current->R = temp;
                    temp->P = current;
                    temp->R = temp->L = nullptr;
                }
            }
        }
    }

    bool prune(Node<T>* ptr, T point,float min_distance, int axis) {
        float temp_distance = fabs(point[get_axis(axis)] - ptr->data[get_axis(axis)]);
        if (min_distance < temp_distance) {
            return true;
        }
        return false;
    }
    

    Node<T>* traverse_down(Node<T>* root, Node<T>*& current_best, T p, float& min_dis, int& axis) {
        float temp_distance = min_dis;
        T temp_point = p;
        // which axis to compare points
        int temp_axis = axis;
        Node<T>* current = root;
        if (current->L == nullptr && current->R == nullptr) {
            if ((distance(current->data, p) < temp_distance)) {
               current_best = current;
               min_dis = distance(current->data, p);
               return current; 
            }
            else {
                return current;
            }

        }
            while (current->R != nullptr || current->L != nullptr) {
                //std::cout<< counter++<<"\n";
                if (p[get_axis(axis)] <= current->data[get_axis(axis)] && current->L != nullptr) {

                    current = current->L;
                    axis++;

                }
                else if (p[get_axis(axis)] <= current->data[get_axis(axis)] && current->L == nullptr) {

                    current = current->R;
                    axis++;
                }
                else if (p[get_axis(axis)] > current->data[get_axis(axis)] && current->R != nullptr) {
                    current = current->R;
                    axis++;
                }
                else if (p[get_axis(axis)] > current->data[get_axis(axis)] && current->R == nullptr) {
                    current = current->L;
                    axis++;
                    
                }

            }

            if (current->L == nullptr && current->R == nullptr) {
                if (distance(current->data, p) < temp_distance) {
                    temp_distance = distance(p, current->data);
                    temp_point = current->data;
                    min_dis = temp_distance;
                    current_best = current;
                }
            }

        
        return current;
    }
     bool is_Node_visited(const Node<T>* ptr){
      if(visited_nodes.size()!=0){
      for(auto& i : visited_nodes){
        if(ptr == i){
          //std::cout<<3;
          return true;
        }
      }
      //std::cout<<2;
      return false;
      }
      //std::cout<<1;
       return false;
     }
    

    Node<T>* move_up(Node<T>* start, Node<T>* end, Node<T>*& current_best,T p, float& min_distance, int& axis) {
        
        Node<T>* current = start;
        Node<T>* previous = start;
        T temp_point = start->data;
        int temp_axis = axis;
        while (current != end) {
      
            
            if (!prune(current,p,min_distance,axis) && !is_Node_visited(current)) {
                visited_nodes.push_back(current);
                   float temp_distance = distance(current->data, p);
            if (temp_distance < min_distance) {
                    min_distance = temp_distance;
                    current_best = current;
            }
                if (current->L == previous && current->R != nullptr) {
                    //std::cout<<2;
                    axis++;
                    
                    return current->R;
                }
                else if (current->R == previous && current->L != nullptr) {
                     axis++;
                    return current->L;
                }
            }
               float temp_distance = distance(current->data, p);
            if (temp_distance < min_distance) {
                    min_distance = temp_distance;
                    current_best = current;
            }
            
            previous = current;
            current = current->P;
            axis--;
            
    
        }

        
        return current;

    }





    T nearest_point(const T p) {
      
        float max = distance(p, Root->data);
        int axis = 0;
        Node<T>* current_node = Root;
        Node<T>* current_best = Root;
        Node<T>* temp = Root;
        do{
        current_node = traverse_down(current_node,current_best, p, max , axis);
        current_node = move_up(current_node,stoppage,current_best, p, max, axis);
        }while(current_node != stoppage);
        
        this->clear();
        return current_best->data;
    }
    Node<T>* get_Root() {
        return Root;
    }
    void clear(){
      visited_nodes.clear();
    }
    int get_size(){
      return m_size;
    }

};

template <typename T>
void feed_data(std::vector<T>& data, kd_tree<T>& tree, int axis) {

    axis = axis % tree.get_size();
    sort_array(data, axis);
    int median = data.size() / 2;
    tree.add_to_tree(data[median]);
    
    
    // left vector 
    
    if (median >= 1) {
      std::vector<T> ldata;
        for (int i = 0; i != median; i++) {
            ldata.push_back(data[i]);
        }
        
        //std::cout<< "l";
        
        //std::cout<<counter_l<<"\n";
        feed_data<T>(ldata, tree,(axis+1));

    }

     if (median >= 1 && data.size() >= 3) {
        std::vector<T> rdata;
        for (int i = median + 1; i != data.size(); i++) {
            rdata.push_back(data[i]);
        }
        //std::cout<< "r";
        //counter_r++;
        feed_data<T>(rdata, tree,axis+1);
    }
    
    
    
    // right vector
   
   //std::cout<<axis<<"\n";

}

struct vec3 {
    int x, y, z;

    int operator[](int index) {
        switch (index) {
        case 0:
            return x;
        case 1:
            return y;
        case 2:
            return z;
        default:
        return 0;
        }
    }
    friend std::ostream& operator<<(std::ostream& os, const Node<vec3>* p) {
        os << p->data.x << "\t" << p->data.y << "\t" << p->data.z << "\n";
        return os;
    }
    
    friend std::ostream& operator<<(std::ostream& os, const vec3 p) {
        os << p.x << "\t" << p.y << "\t" << p.z <<  "\n";
        return os;
    }
    friend float distance(const vec3& a, const vec3& b) {

        return sqrtf((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z));

    }
    friend bool operator == (const vec3& a, const vec3& b) {
        return (a.x == b.x && a.y == b.y && a.z == b.z);
    }
    friend bool operator != (const vec3& a, const vec3& b) {
        return !(a == b);
    }
};

struct vec2 {
    int x, y;

    int operator[](int index) {
        switch (index) {
        case 0:
            return x;
        case 1:
            return y;
        default:
            return 0;
        }
    }
    friend std::ostream& operator<<(std::ostream& os, const Node<vec2>* p) {
        os << p->data.x << "\t" << p->data.y << "\n";
        return os;
    }
    friend std::ostream& operator<<(std::ostream& os, const vec2 p) {
        os << p.x << "\t" << p.y << "\n";
        return os;
    }

    friend float distance(const vec2& a, const vec2& b) {

        return sqrtf((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));

    }
    friend bool operator == (const vec2& a, const vec2& b) {
        return (a.x == b.x && a.y == b.y);
    }
    friend bool operator != (const vec2& a, const vec2& b) {
        return !(a == b);
    }
};


typedef vec3 point3;
typedef vec2 point2;

template<typename T>
T find_nearest(const T& p, std::vector<T>& data) {
    float dis = distance(p,data[0]);
    T point = data[0];
    for (auto& i : data) {
        if (distance(i, p) < dis) {
            point = i;
            dis = distance(i, p);
        }
    }
    return point;

}


int Random() {
static std::uniform_int_distribution<int> distribution(0, 1000);
static std::mt19937 generator;
return distribution(generator);
}

int main()
{
    srand(time(NULL));
    std::vector<point3> v;
    kd_tree<point3> tree(3);
    for(int i =0; i!=100000; i++){
      point3 r{Random(),Random(),Random()};
      v.push_back(r);
    }
   
    feed_data<point3>(v, tree,0);
   int counter = 0;
    
    for(int i = 0; i!= 10; i++){
      
    point3 r{Random(),Random(),Random()};
    point3 brute_force = find_nearest<point3>(r, v);
    point3 clever = tree.nearest_point(r);
    float d_brute = distance(brute_force, r);
    float d_clever = distance(clever, r);
    if(clever != brute_force){
      counter++;
      //std::cout<< "distance with brute is : " << d_brute << "\n";
      //std::cout<< "distance with kd_tree is : "<< d_clever << "\n";
      std::cout<< r << "\n";
      std::cout<< brute_force << "\t" << clever << "\n";
    }
    
      
    }
    
    std::cout<< distance(point3{353,848, 171}, point3{342,836,173}) <<"\n";
    std::cout<< distance(point3{353,848, 171}, point3{350,862,179}) <<"\n";
    
    
    std::cout<<counter;
     
  

    return 0;
} 
by

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}