#define IR_SENSOR_RIGHT 11
#define IR_SENSOR_LEFT 12
#define MOTOR_SPEED 180

//Right motor
int enableRightMotor=6;
int rightMotorPin1=7;
int rightMotorPin2=8;

//Left motor
int enableLeftMotor=5;
int leftMotorPin1=9;
int leftMotorPin2=10;

void setup()
{
  //The problem with TT gear motors is that, at very low pwm value it does not even rotate.
  //If we increase the PWM value then it rotates faster and our robot is not controlled in that speed and goes out of line.
  //For that we need to increase the frequency of analogWrite.
  //Below line is important to change the frequency of PWM signal on pin D5 and D6
  //Because of this, motor runs in controlled manner (lower speed) at high PWM value.
  //This sets frequecny as 7812.5 hz.
  TCCR0B = TCCR0B & B11111000 | B00000010 ;

  // put your setup code here, to run once:
  pinMode(enableRightMotor, OUTPUT);
  pinMode(rightMotorPin1, OUTPUT);
  pinMode(rightMotorPin2, OUTPUT);

  pinMode(enableLeftMotor, OUTPUT);
  pinMode(leftMotorPin1, OUTPUT);
  pinMode(leftMotorPin2, OUTPUT);

  pinMode(IR_SENSOR_RIGHT, INPUT);
  pinMode(IR_SENSOR_LEFT, INPUT);
  rotateMotor(0,0);   
}


void loop()
{

  int rightIRSensorValue = digitalRead(IR_SENSOR_RIGHT);
  int leftIRSensorValue = digitalRead(IR_SENSOR_LEFT);

  //If none of the sensors detects black line, then go straight
  if (rightIRSensorValue == LOW && leftIRSensorValue == LOW)
  {
    rotateMotor(MOTOR_SPEED, MOTOR_SPEED);
  }
  //If right sensor detects black line, then turn right
  else if (rightIRSensorValue == HIGH && leftIRSensorValue == LOW )
  {
      rotateMotor(-MOTOR_SPEED, MOTOR_SPEED); 
  }
  //If left sensor detects black line, then turn left  
  else if (rightIRSensorValue == LOW && leftIRSensorValue == HIGH )
  {
      rotateMotor(MOTOR_SPEED, -MOTOR_SPEED); 
  } 
  //If both the sensors detect black line, then stop 
  else 
  {
    rotateMotor(0, 0);
  }
}


void rotateMotor(int rightMotorSpeed, int leftMotorSpeed)
{

  if (rightMotorSpeed < 0)
  {
    digitalWrite(rightMotorPin1,LOW);
    digitalWrite(rightMotorPin2,HIGH);    
  }
  else if (rightMotorSpeed > 0)
  {
    digitalWrite(rightMotorPin1,HIGH);
    digitalWrite(rightMotorPin2,LOW);      
  }
  else
  {
    digitalWrite(rightMotorPin1,LOW);
    digitalWrite(rightMotorPin2,LOW);      
  }

  if (leftMotorSpeed < 0)
  {
    digitalWrite(leftMotorPin1,LOW);
    digitalWrite(leftMotorPin2,HIGH);    
  }
  else if (leftMotorSpeed > 0)
  {
    digitalWrite(leftMotorPin1,HIGH);
    digitalWrite(leftMotorPin2,LOW);      
  }
  else 
  {
    digitalWrite(leftMotorPin1,LOW);
    digitalWrite(leftMotorPin2,LOW);      
  }
  analogWrite(enableRightMotor, abs(rightMotorSpeed));
  analogWrite(enableLeftMotor, abs(leftMotorSpeed));    
} 

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}