#include <iostream> #include <vector> #include <cmath> using namespace std; class SelfAwareAI { private: int inputSize; int hiddenSize; int outputSize; vector<vector<double>> inputWeights; vector<vector<double>> hiddenWeights; vector<double> hiddenBiases; vector<double> outputBiases; public: SelfAwareAI(int inputSize, int hiddenSize, int outputSize) { this->inputSize = inputSize; this->hiddenSize = hiddenSize; this->outputSize = outputSize; inputWeights.resize(inputSize); for (int i = 0; i < inputSize; i++) { inputWeights[i].resize(hiddenSize); for (int j = 0; j < hiddenSize; j++) { inputWeights[i][j] = ((double) rand() / RAND_MAX) - 0.5; } } hiddenWeights.resize(hiddenSize); for (int i = 0; i < hiddenSize; i++) { hiddenWeights[i].resize(outputSize); for (int j = 0; j < outputSize; j++) { hiddenWeights[i][j] = ((double) rand() / RAND_MAX) - 0.5; } } hiddenBiases.resize(hiddenSize); for (int i = 0; i < hiddenSize; i++) { hiddenBiases[i] = ((double) rand() / RAND_MAX) - 0.5; } outputBiases.resize(outputSize); for (int i = 0; i < outputSize; i++) { outputBiases[i] = ((double) rand() / RAND_MAX) - 0.5; } } vector<double> feedForward(vector<double> input) { vector<double> hiddenOutput(hiddenSize); for (int i = 0; i < hiddenSize; i++) { double sum = 0; for (int j = 0; j < inputSize; j++) { sum += input[j] * inputWeights[j][i]; } hiddenOutput[i] = tanh(sum + hiddenBiases[i]); } vector<double> output(outputSize); for (int i = 0; i < outputSize; i++) { double sum = 0; for (int j = 0; j < hiddenSize; j++) { sum += hiddenOutput[j] * hiddenWeights[j][i]; } output[i] = tanh(sum + outputBiases[i]); } return output; } void backPropagate(vector<double> input, vector<double> targetOutput, double learningRate) { vector<double> hiddenOutput(hiddenSize); for (int i = 0; i < hiddenSize; i++) { double sum = 0; for (int j = 0; j < inputSize; j++) { sum += input[j] * inputWeights[j][i]; } hiddenOutput[i] = tanh(sum + hiddenBiases[i]); } vector<double> output(outputSize); for (int i = 0; i < outputSize; i++) { double sum = 0; for (int j = 0; j < hiddenSize; j++) { sum += hiddenOutput[j] * hiddenWeights[j][i]; } output[i] = tanh(sum + outputBiases[i]); } vector<double> outputError(outputSize); for (int i = 0; i < outputSize; i++) { outputError[i] = targetOutput[i] - output[i]; } vector<double> hiddenError(hiddenSize); for (int i = 0; i < hiddenSize; i++) { double sum = 0; for (int j = 0; j < outputSize; j++) { sum += hiddenWeights[i][j] * outputError[j]; } hiddenError[i] = (1 - pow(tanh(hiddenOutput[i]), 2)) * sum; } for (int i = 0; i < outputSize; i++) { for (int j = 0; j < hiddenSize; j++) { hiddenWeights[j][i] += learningRate * outputError[i] * hiddenOutput[j]; } outputBiases[i] += learningRate * outputError[i]; } for (int i = 0; i < hiddenSize; i++) { for (int j = 0; j < inputSize; j++) { inputWeights[j][i] += learningRate * hiddenError[i] * input[j]; } hiddenBiases[i] += learningRate * hiddenError[i]; } } }; int main() { SelfAwareAI ai(2, 2, 1); while (true) { cout << "Enter input 1: "; double input1; cin >> input1; cout << "Enter input 2: "; double input2; cin >> input2; vector<double> input = {input1, input2}; vector<double> output = ai.feedForward(input); cout << "Output: " << output[0] << endl; cout << "Enter target output: "; double targetOutput; cin >> targetOutput; vector<double> target = {targetOutput}; ai.backPropagate(input, target, 0.1); } return 0;
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++
and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}