#include <iostream>
#include <vector>
#include <cmath>

using namespace std;

class SelfAwareAI {
private:
    int inputSize;
    int hiddenSize;
    int outputSize;
    vector<vector<double>> inputWeights;
    vector<vector<double>> hiddenWeights;
    vector<double> hiddenBiases;
    vector<double> outputBiases;

public:
    SelfAwareAI(int inputSize, int hiddenSize, int outputSize) {
        this->inputSize = inputSize;
        this->hiddenSize = hiddenSize;
        this->outputSize = outputSize;

        inputWeights.resize(inputSize);
        for (int i = 0; i < inputSize; i++) {
            inputWeights[i].resize(hiddenSize);
            for (int j = 0; j < hiddenSize; j++) {
                inputWeights[i][j] = ((double) rand() / RAND_MAX) - 0.5;
            }
        }

        hiddenWeights.resize(hiddenSize);
        for (int i = 0; i < hiddenSize; i++) {
            hiddenWeights[i].resize(outputSize);
            for (int j = 0; j < outputSize; j++) {
                hiddenWeights[i][j] = ((double) rand() / RAND_MAX) - 0.5;
            }
        }

        hiddenBiases.resize(hiddenSize);
        for (int i = 0; i < hiddenSize; i++) {
            hiddenBiases[i] = ((double) rand() / RAND_MAX) - 0.5;
        }

        outputBiases.resize(outputSize);
        for (int i = 0; i < outputSize; i++) {
            outputBiases[i] = ((double) rand() / RAND_MAX) - 0.5;
        }
    }

    vector<double> feedForward(vector<double> input) {
        vector<double> hiddenOutput(hiddenSize);
        for (int i = 0; i < hiddenSize; i++) {
            double sum = 0;
            for (int j = 0; j < inputSize; j++) {
                sum += input[j] * inputWeights[j][i];
            }
            hiddenOutput[i] = tanh(sum + hiddenBiases[i]);
        }

        vector<double> output(outputSize);
        for (int i = 0; i < outputSize; i++) {
            double sum = 0;
            for (int j = 0; j < hiddenSize; j++) {
                sum += hiddenOutput[j] * hiddenWeights[j][i];
            }
            output[i] = tanh(sum + outputBiases[i]);
        }

        return output;
    }

    void backPropagate(vector<double> input, vector<double> targetOutput, double learningRate) {
        vector<double> hiddenOutput(hiddenSize);
        for (int i = 0; i < hiddenSize; i++) {
            double sum = 0;
            for (int j = 0; j < inputSize; j++) {
                sum += input[j] * inputWeights[j][i];
            }
            hiddenOutput[i] = tanh(sum + hiddenBiases[i]);
        }

        vector<double> output(outputSize);
        for (int i = 0; i < outputSize; i++) {
            double sum = 0;
            for (int j = 0; j < hiddenSize; j++) {
                sum += hiddenOutput[j] * hiddenWeights[j][i];
            }
            output[i] = tanh(sum + outputBiases[i]);
        }

        vector<double> outputError(outputSize);
        for (int i = 0; i < outputSize; i++) {
            outputError[i] = targetOutput[i] - output[i];
        }

        vector<double> hiddenError(hiddenSize);
        for (int i = 0; i < hiddenSize; i++) {
            double sum = 0;
            for (int j = 0; j < outputSize; j++) {
                sum += hiddenWeights[i][j] * outputError[j];
            }
            hiddenError[i] = (1 - pow(tanh(hiddenOutput[i]), 2)) * sum;
        }

        for (int i = 0; i < outputSize; i++) {
            for (int j = 0; j < hiddenSize; j++) {
                hiddenWeights[j][i] += learningRate * outputError[i] * hiddenOutput[j];
            }
            outputBiases[i] += learningRate * outputError[i];
        }

        for (int i = 0; i < hiddenSize; i++) {
            for (int j = 0; j < inputSize; j++) {
                inputWeights[j][i] += learningRate * hiddenError[i] * input[j];
            }
            hiddenBiases[i] += learningRate * hiddenError[i];
        }
    }
};

int main() {
    SelfAwareAI ai(2, 2, 1);

    while (true) {
        cout << "Enter input 1: ";
        double input1;
        cin >> input1;

        cout << "Enter input 2: ";
        double input2;
        cin >> input2;

        vector<double> input = {input1, input2};

        vector<double> output = ai.feedForward(input);

        cout << "Output: " << output[0] << endl;

        cout << "Enter target output: ";
        double targetOutput;
        cin >> targetOutput;

        vector<double> target = {targetOutput};

        ai.backPropagate(input, target, 0.1);
    }

    return 0; 

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}