// C++ program to insert a node in AVL tree #include<bits/stdc++.h> using namespace std; // An AVL tree node class Node { public: int key; Node *left; Node *right; int height; }; // A utility function to get the // height of the tree int height(Node *N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum // of two integers int max(int a, int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ Node* newNode(int key) { Node* node = new Node(); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially // added at leaf return(node); } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node *rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node *leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } // Recursive function to insert a key // in the subtree rooted with node and // returns the new root of the subtree. Node* insert(Node* node, int key) { /* 1. Perform the normal BST insertion */ if (node == NULL) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else // Equal keys are not allowed in BST return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } // A utility function to print preorder // traversal of the tree. // The function also prints height // of every node void preOrder(Node *root) { if(root != NULL) { cout << root->key << " "; preOrder(root->left); preOrder(root->right); } } // Driver Code int main() { Node *root = NULL; /* Constructing tree given in the above figure */ root = insert(root, 10); root = insert(root, 20); root = insert(root, 30); root = insert(root, 40); root = insert(root, 50); root = insert(root, 25); /* The constructed AVL Tree would be 30 / \ 20 40 / \ \ 10 25 50 */ cout << "Preorder traversal of the " "constructed AVL tree is \n"; preOrder(root); return 0; }
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++
and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}