#include <max6675.h>
#include <Wire.h> 
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27,16,4);  // Initialize the LCD display
#include <Wire.h>

int thermoDO = 6;                   // Data Out pin for MAX6675 temperature sensor
int thermoCS = 5;                   // Chip Select pin for MAX6675 temperature sensor
int thermoCLK = 4;                  // Clock pin for MAX6675 temperature sensor

int heater_LED = 13;                 // Heater LED pin
int sec=0;
int minutes=0;
const int buttonPin = A0;            // Button pin for mode switching
const int keypadPin = A1;            // Analog pin for numeric keypad

int Solenoid_Valve = 8;              // Solenoid valve pin
int Heater = 9;                      // Electric heater pin
int buttonState = 0;  
int i=0;
MAX6675 thermocouple(thermoCLK, thermoCS, thermoDO);  // Create MAX6675 object for temperature sensing
unsigned long previousMillis = 0;    // Timer for LED update
const long interval = 1000;          // Interval for LED update
int temp=0;                           // Temperature variable
int timeonedegree = 0;                // Time taken for water to rise by 1 degree
int tempreq = 0;                      // Required temperature
int timeavail = 0;                     // Time available for water to reach desired temperature
int tempdiff = 0;                      // Difference between desired and actual temperature
int timereq = 0;                       // Time required to reach desired temperature

void setup() {
  Serial.begin(9600);                // Start serial communication

  pinMode(Solenoid_Valve, OUTPUT);   // Set solenoid valve pin as output
  pinMode(Heater, OUTPUT);           // Set electric heater pin as output
  
  digitalWrite(Solenoid_Valve, HIGH); // Close solenoid valve initially
  digitalWrite(Heater, HIGH);         // Turn off heater initially
  pinMode(buttonPin, INPUT_PULLUP);   // Set button pin as input with internal pull-up resistor
  pinMode(heater_LED,OUTPUT);         // Set heater LED pin as output
  lcd.init();                         // Initialize the LCD
  lcd.backlight();                    // Turn on LCD backlight
  digitalWrite(heater_LED, LOW);      // Turn off heater LED initially

  delay(500);                         // Delay for stability
}

void loop() {
  buttonState = digitalRead(buttonPin);  // Read button state
  
  if(buttonState == 0) {              // If button is pressed
    lcd.clear();                      // Clear LCD
    delay(250);                       // Delay for stability
    i=!i;                            // Toggle mode
    if(i == 1) {                      // If auto mode is turned on
      lcd.setCursor(0, 0);
      lcd.print("How much temperature do you require?");
      lcd.setCursor(0, 1);
      lcd.print("Enter: ");
      tempreq = readKeypad();        // Read temperature input from keypad
      lcd.clear();
      lcd.print("After how many minutes do you want hot water?");
      lcd.setCursor(0, 1);
      lcd.print("Enter: ");
      timeavail = readKeypad();       // Read time input from keypad
      lcd.clear();
      temp = thermocouple.readCelsius();
      unsigned long startMillis = millis();
      while(temp < tempreq) {
        temp = thermocouple.readCelsius();
        unsigned long currentMillis = millis();
        if(currentMillis - startMillis >= 60000) { // Check every minute
          timeonedegree++;
          startMillis = currentMillis;
        }
      }
      tempdiff = tempreq - temp;
      timereq = tempdiff * timeonedegree;
      if(timereq > timeavail) {
        digitalWrite(Solenoid_Valve, HIGH); // Close solenoid valve
        digitalWrite(Heater, LOW);          // Turn on electric heater
        digitalWrite(heater_LED, HIGH);     // Turn on heater LED
      }
    }
    else {
      digitalWrite(Solenoid_Valve, LOW; // Open solenoid valve
      digitalWrite(Heater, HIGH);          // Turn off electric heater
      digitalWrite(heater_LED, LOW);       // Turn off heater LED
    }
  }

  unsigned long currentMillis = millis();  // Get current time
  
  if (currentMillis - previousMillis >= interval) {  // If time interval passed
    sec++;                               // Increment seconds
    if (sec > 59) {                      // If seconds exceed 59
      sec = 0;                           // Reset seconds
      minutes++;                         // Increment minutes
      if (minutes > 59) {                // If minutes exceed 59
        minutes = 0;                     // Reset minutes
      }
      if (sec < 10) {                    // If seconds less than 10, for formatting
        lcd.setCursor(15, 0);            // Set cursor position
        lcd.print(" ");                  // Print space
      }
    }

    lcd.setCursor(14, 0);                // Set cursor position for seconds
    lcd.print(sec);                      // Print seconds
    lcd.setCursor(13, 0);                // Set cursor position for colon
    lcd.print(":");                      // Print colon
    lcd.setCursor(11, 0);                // Set cursor position for minutes
    lcd.print(minutes);                  // Print minutes

    if (i == 0) {                        // Manual mode
      lcd.setCursor(0, 0);               // Set cursor position
      lcd.print("Manual Mod  ");          // Print mode
      lcd.setCursor(0, 1);               // Set cursor position
      lcd.print("Temp =");                // Print temperature label
      lcd.setCursor(7,1);                 // Set cursor position for temperature value
      lcd.print(temp);                    // Print temperature
    }

    // if (i == 1) {                        // Automatic mode
    //   lcd.setCursor(0, 0);               // Set cursor position
    //   lcd.print("Auto mod  ");           // Print mode
    //   lcd.setCursor(0, 1);               // Set cursor position
    //   lcd.print("Temp = ");               // Print temperature label
    //   lcd.setCursor(7,1);                // Set cursor position for temperature value
    //   lcd.print(temp);                    // Print temperature
      
    //   if (temp >= 60) {                  // If temperature is greater than or equal to 60°C
    //     lcd.setCursor(0, 2);             // Set cursor position
    //     lcd.print("Valve ON ");           // Print valve status
    //     lcd.setCursor(0, 3);             // Set cursor position
    //     lcd.print("Heater OFF");         // Print heater status
    //     digitalWrite(Solenoid_Valve, LOW);  // Open solenoid valve
    //     digitalWrite(Heater, HIGH);         // Turn off electric heater
    //     digitalWrite(heater_LED, LOW);       // Turn off heater LED
    //   }
    //   else {                             // If temperature is less than 60°C
    //     lcd.setCursor(0, 2);             // Set cursor position
    //     lcd.print("Valve OFF");           // Print valve status
    //     lcd.setCursor(0, 3);             // Set cursor position
    //     lcd.print("Heater ON");          // Print heater status
    //     digitalWrite(Solenoid_Valve, HIGH);  // Close solenoid valve
    //     digitalWrite(Heater, LOW);           // Turn on electric heater
    //     digitalWrite(heater_LED, HIGH);      // Turn on heater LED
    //   }
    // }
    previousMillis = currentMillis;     // Update previous time
  }
}

int readKeypad() {
  const int ROWS = 4;
  const int COLS = 4;
  char keys[ROWS][COLS] = {
    {'1','2','3','A'},
    {'4','5','6','B'},
    {'7','8','9','C'},
    {'*','0','#','D'}
  };
  int rowPins[ROWS] = {9, 8, 7, 6}; // connect to the row pinouts of the keypad
  int colPins[COLS] = {5, 4, 3, 2}; // connect to the column pinouts of the keypad
  Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);
  char key = keypad.getKey();
  int value = 0;
  if (key) {
    value = key - '0';
    return value;
  }
  return 0;
} 
by

C++ Online Compiler

Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!

Read inputs from stdin

OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.

#include <iostream>
#include <string>
using namespace std;

int main() 
{
    string name;
    cout << "Enter name:";
    getline (cin, name);
    cout << "Hello " << name;
    return 0;
}

About C++

C++ is a widely used middle-level programming language.

  • Supports different platforms like Windows, various Linux flavours, MacOS etc
  • C++ supports OOPS concepts like Inheritance, Polymorphism, Encapsulation and Abstraction.
  • Case-sensitive
  • C++ is a compiler based language
  • C++ supports structured programming language
  • C++ provides alot of inbuilt functions and also supports dynamic memory allocation.
  • Like C, C++ also allows you to play with memory using Pointers.

Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition If-Else is used.

if(conditional-expression) {
   //code
}
else {
   //code
}

You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.

2. Switch:

Switch is an alternative to If-Else-If ladder.

switch(conditional-expression){    
case value1:    
 // code    
 break;  // optional  
case value2:    
 // code    
 break;  // optional  
......    
    
default:     
 code to be executed when all the above cases are not matched;    
} 

3. For:

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
  //code  
} 

4. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
// code 
}  

5. Do-While:

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
 // code 
} while (condition); 

Functions

Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.

How to declare a Function:

return_type function_name(parameters);

How to call a Function:

function_name (parameters)

How to define a Function:

return_type function_name(parameters) {  
 // code
}