#include <stdio.h> #include <stdlib.h> //#include <mpi.h> //#include <opencv2/opencv.hpp> int main(int argc, char **argv) { // Initialize MPI MPI_Init(&argc, &argv); // Get rank and size int rank, size; MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); // The input image cv::Mat image; // The total size of the image matrix (rows * columns * channels) size_t imageTotalSize = 0; // Partial size (how many bytes will be sent to each process) size_t imagePartialSize = 0; // How many channels are there in the image? int channels = 0; // Partial buffer, to contain the image uchar *partialBuffer = nullptr; // Also create the output image, where we will save the results cv::Mat outImage; // Read the image and its properties in the ROOT process if (rank == 0) { // Read the image image = cv::imread("image.jpg", cv::IMREAD_UNCHANGED); // Check if it's empty if (image.empty()) { fprintf(stderr, "Image is empty, terminating!\n"); MPI_Finalize(); return -1; } // Get the number of channels in the image channels = image.channels(); // Get the total size of the image matrix (rows * columns * channels) imageTotalSize = image.total() * image.elemSize(); // Check if we can evenly divide the image bytes by the number of processes if (imageTotalSize % size) { fprintf(stderr, "Cannot evenly divide the image between the processes. Choose a different number of processes!\n"); MPI_Finalize(); return -2; } // Get partial size (how many bytes are sent to each process) imagePartialSize = imageTotalSize / size; printf("The image will be divided into blocks of %zu bytes each\n", imagePartialSize); } // Broadcast the "partial size" and the number of channels to all other processes MPI_Bcast(&imagePartialSize, 1, MPI_UNSIGNED_LONG_LONG, 0, MPI_COMM_WORLD); MPI_Bcast(&channels, 1, MPI_INT, 0, MPI_COMM_WORLD); // Synchronize the processes to make sure that the sizes are initialized MPI_Barrier(MPI_COMM_WORLD); // Allocate the partial buffer partialBuffer = (uchar *)malloc(imagePartialSize * sizeof(uchar)); // Synchronize the processes to make sure each process has allocated the buffer MPI_Barrier(MPI_COMM_WORLD); // Scatter the image between the processes MPI_Scatter(image.data, imagePartialSize, MPI_UNSIGNED_CHAR, partialBuffer, imagePartialSize, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD); // Synchronize the image processing MPI_Barrier(MPI_COMM_WORLD); // Process the image for (size_t i = 0; i < imagePartialSize; i += channels) { // Get the pixel uchar *B = &partialBuffer[i]; uchar *G = &partialBuffer[i + 1]; uchar *R = &partialBuffer[i + 2]; // Swap the blue and the red uchar temp = *B; *B = *R; *R = temp; } // Synchronize the image processing MPI_Barrier(MPI_COMM_WORLD); // Initialize the output image (only need to do it in the ROOT process) if (rank == 0) { outImage = cv::Mat(image.size(), image.type()); } // Gather the processed image data to the ROOT process MPI_Gather(partialBuffer, imagePartialSize, MPI_UNSIGNED_CHAR, outImage.data, imagePartialSize, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD); // Save and display image (only in the ROOT process) if (rank == 0) { // Save the image cv::imwrite("new_image.jpg", outImage); // Show it on the screen cv::imshow("image", outImage); cv::waitKey(0); cv::destroyAllWindows(); } // Clean up free(partialBuffer); MPI_Finalize(); return 0; }
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++
and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}