#include <uhd/convert.hpp> #include <uhd/exception.hpp> #include <uhd/types/tune_request.hpp> #include <uhd/usrp/multi_usrp.hpp> #include <uhd/utils/safe_main.hpp> #include <boost/algorithm/string.hpp> #include <boost/filesystem.hpp> #include <boost/format.hpp> #include <boost/lexical_cast.hpp> #include <boost/process.hpp> #include <boost/program_options.hpp> #include <chrono> #include <complex> #include <csignal> #include <fstream> #include <iostream> #include <numeric> #include <regex> #include <thread> #include <condition_variable> #include <mutex> #include <queue> #include <atomic> #include <ctime> #include <iomanip> using namespace std::chrono_literals; namespace po = boost::program_options; const std::time_t GPS_UNIX_DIFF = 315964800; const int GPS_UTC_OFFSET = 18; std::mutex recv_mutex; static bool stop_signal_called = false; static bool overflow_message = true; void sig_int_handler(int) { stop_signal_called = true; } template <typename samp_type> void recv_to_file(uhd::usrp::multi_usrp::sptr usrp, const std::string& cpu_format, const std::string& wire_format, const std::vector<size_t>& channel_nums, const size_t total_num_channels, const std::string& file, size_t samps_per_buff, unsigned long long num_requested_samples, double& bw, double time_requested = 0.0, bool stats = false, bool null = false, bool enable_size_map = false, bool continue_on_bad_packet = false, double file_time_requested = 0.0, const std::string& ref = "", bool enable_multiple_files = false, const std::string& thread_prefix = "") ) { // Total number of samples to receive (0 means continuous) unsigned long long num_requested_samples = 0; unsigned long long num_total_samps = 0; // Create a receive streamer uhd::stream_args_t stream_args(cpu_format, wire_format); stream_args.channels = channel_nums; uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); // Create a buffer pool const size_t num_buffers = 20; // Adjust as needed struct Buffer { std::vector<samp_type> data; uhd::rx_metadata_t metadata; }; std::vector<Buffer> buffer_pool(num_buffers, Buffer{std::vector<samp_type>(samps_per_buff), uhd::rx_metadata_t()}); // Synchronization primitives std::mutex mtx; std::condition_variable cv; std::queue<size_t> free_buffers; // Indices of free buffers std::queue<size_t> full_buffers; // Indices of buffers ready to write for (size_t i = 0; i < num_buffers; ++i) { free_buffers.push(i); } std::atomic<size_t> active_write_threads(0); // File management variables std::ofstream outfile; std::string current_filename; size_t buffers_in_current_file = 0; size_t buffers_per_file = (file_time_requested > 0) ? static_cast<size_t>(usrp->get_rx_rate(total_num_channels / 1e6) * file_time_requested / samps_per_buff) : 0; // Function to get timestamp for filename auto get_timestamp = [&](const uhd::rx_metadata_t& md) { std::time_t timestamp; if (ref == "gpsdo" && md.has_time_spec && md.time_spec.get_full_secs() > 0) { // Use USRP time synced with GPSDO timestamp = static_cast<std::time_t>(md.time_spec.get_full_secs()) + GPS_UNIX_DIFF - GPS_UTC_OFFSET; } else { // Use system time timestamp = std::time(nullptr); } // Adjust for Singapore Time (UTC+8) timestamp += 8 * 3600; std::ostringstream oss; std::tm tm = *std::gmtime(×tamp); oss << std::put_time(&tm, "%d%m%Y_%Hhr%Mmin%Ss"); return oss.str(); }; std::cout << "Started Streaming...." << std::endl; // Receive thread std::thread recv_thread([&]() { uhd::rx_metadata_t md; size_t buffer_index; size_t num_rx_samps; // Issue stream command uhd::stream_cmd_t stream_cmd((num_requested_samples == 0) ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = size_t(num_requested_samples); stream_cmd.stream_now = false; stream_cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1); rx_stream->issue_stream_cmd(stream_cmd); typedef std::map<size_t, size_t> SizeMap; SizeMap mapSizes; const auto start_time = std::chrono::steady_clock::now(); const auto stop_time = start_time + (1s * time_requested); // Track time and samps between updating the BW summary auto last_update = start_time; unsigned long long last_update_samps = 0; while (not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0) and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) { const auto now = std::chrono::steady_clock::now(); // Get a free buffer { std::unique_lock<std::mutex> lock(mtx); cv.wait(lock, [&]() { return !free_buffers.empty() || stop_signal_called; }); if (stop_signal_called break; buffer_index = free_buffers.front(); free_buffers.pop(); } // Receive samples into buffer size_t num_rx_samps = rx_stream->recv(&buffer_pool[buffer_index].data.front(), samps_per_buff, md, 3.0); buffer_pool[buffer_index].metadata = md; if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::cout << std::endl << thread_prefix << "Timeout while streaming" << std::endl; if (++retry_count > MAX_RETRIES) { std::cerr << "Maximum retries reached. Exiting... " << std::endl; break; } continue; } if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) { const std::lock_guard<std::mutex> lock(recv_mutex); if (overflow_message) { overflow_message = false; std::cerr << boost::format( "Got an overflow indication. Please consider the following:\n" " Your write medium must sustain a rate of %0.3fMB/s.\n" " Dropped samples will not be written to the file.\n" " Please modify this example for your purposes.\n" " This message will not appear again.\n") % (usrp->get_rx_rate(channel_nums[0]) * total_num_channels * sizeof(samp_type) / 1e6); } continue; } if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { const std::lock_guard<std::mutex> lock(recv_mutex); std::string error = thread_prefix + "Receiver error: " + md.strerror(); if (continue_on_bad_packet) { std::cerr << error << std::endl; continue; } else throw std::runtime_error(error); } if (enable_size_map) { const std::lock_guard<std::mutex> lock(recv_mutex); SizeMap::iterator it = mapSizes.find(num_rx_samps); if (it == mapSizes.end()) mapSizes[num_rx_samps] = 0; mapSizes[num_rx_samps] += 1; } num_total_samps += num_rx_samps; last_update_samps += num_rx_samps; const auto time_since_last_update = now - last_update; if (time_since_last_update > 1s) { const std::lock_guard<std::mutex> lock(recv_mutex); const double time_since_last_update_s = std::chrono::duration<double>(time_since_last_update).count(); bw = double(last_update_samps) / time_since_last_update_s; last_update_samps = 0; last_update = now; } // Add buffer to full buffers queue { std::unique_lock<std::mutex> lock(mtx); full_buffers.push(buffer_index); } cv.notify_one(); } const auto actual_stop_time = std::chrono::steady_clock::now(); stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; rx_stream->issue_stream_cmd(stream_cmd); // Signal to write thread to stop stop_signal.store(true); cv.notify_all(); if (stats) { const std::lock_guard<std::mutex> lock(recv_mutex); std::cout << std::endl; const double actual_duration_seconds = std::chrono::duration<float>(actual_stop_time - start_time).count(); std::cout << boost::format("%sReceived %d samples in %f seconds") % thread_prefix % num_total_samps % actual_duration_seconds << std::endl; if (enable_size_map) { std::cout << std::endl; std::cout << "Packet size map (bytes: count)" << std::endl; for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++) std::cout << it->first << ":\t" << it->second << std::endl; } } }); // Write thread std::thread write_thread([&]() { size_t buffer_index; while (!stop_signal_called || !full_buffers.empty()) { // Get a full buffer { std::unique_lock<std::mutex> lock(mtx); cv.wait(lock, [&]() { return !full_buffers.empty() || stop_signal_called; }); if (full_buffers.empty()) continue; buffer_index = full_buffers.front(); full_buffers.pop(); active_write_threads++; } // Open new file if needed if (enable_multiple_files && (!outfile.is_open() || (file_time_requested > 0 && buffers_in_current_file >= buffers_per_file))) { // Close previous file if (outfile.is_open()) { outfile.close(); } // Get timestamp from metadata uhd::rx_metadata_t md = buffer_pool[buffer_index].metadata; std::string timestamp = get_timestamp(md); current_filename = timestamp + ".dat"; outfile.open(current_filename.c_str(), std::ofstream::binary); buffers_in_current_file = 0; } else if (!outfile.is_open()) { // Open file if not open current_filename = file + ".dat"; outfile.open(current_filename.c_str(), std::ofstream::binary); } // Write buffer to file outfile.write(reinterpret_cast<const char*>(&buffer_pool[buffer_index].data.front()), samps_per_buff * sizeof(samp_type)); buffers_in_current_file++; // Return buffer to free buffers queue { std::unique_lock<std::mutex> lock(mtx); free_buffers.push(buffer_index); active_write_threads--; } cv.notify_one(); } // Close file if (outfile.is_open()) { outfile.close(); } }); // Wait for receive thread to finish recv_thread.join(); // After receiving is finished, report active write threads size_t remaining_buffers; { std::unique_lock<std::mutex> lock(mtx); remaining_buffers = full_buffers.size(); } if(remaining_buffers > 0){ std::cout << "Received is finished, active write threads before sleep: " << remaining_buffers << std::endl; // Wait for write thread to finish processing remaining buffers while (remaining_buffers > 0) { std::this_thread::sleep_for(std::chrono::seconds(2)); { std::unique_lock<std::mutex> lock(mtx); remaining_buffers = full_buffers.size(); } if (remaining_buffers > 0) { std::cout << "Sleeping 2 seconds as there are active threads..." << std::endl; std::cout << "Active write threads: " << remaining_buffers << std::endl; } } } // Signal to write thread to stop if not already stop_signal.store(true); cv.notify_all(); // Wait for write thread to finish write_thread.join(); // Confirm that all write threads are finished std::cout << "Received is finished, active write threads before sleep: 0" << std::endl; } int UHD_SAFE_MAIN(int argc, char* argv[]) { // variables to be set by po std::string args, file, type, ant, subdev, ref, wirefmt, channels; size_t total_num_samps, spb; double rate, freq, gain, bw, total_time, setup_time, lo_offset, file_time; std::vector<std::thread> threads; std::vector<size_t> channel_list; std::vector<std::string> channel_strings; // setup the program options po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args") ("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to") ("type", po::value<std::string>(&type)->default_value("short"), "sample type: double, float, or short") ("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive") ("total_duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive per loop") ("file_duration", po::value<double>(&file_time)->default_value(1), "total number of seconds to receive per file") ("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer") ("rate", po::value<double>(&rate)->default_value(1e6), "rate of incoming samples") ("freq", po::value<double>(&freq)->default_value(0.0), "RF center frequency in Hz") ("lo-offset", po::value<double>(&lo_offset)->default_value(0.0), "Offset for frontend LO in Hz (optional)") ("gain", po::value<double>(&gain), "gain for the RF chain") ("ant", po::value<std::string>(&ant), "antenna selection") ("subdev", po::value<std::string>(&subdev), "subdevice specification") ("channels,channel", po::value<std::string>(&channels)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)") ("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz") ("ref", po::value<std::string>(&ref), "reference source (internal, external, mimo)") ("wirefmt", po::value<std::string>(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)") ("setup", po::value<double>(&setup_time)->default_value(1.0), "seconds of setup time") ("progress", "periodically display short-term bandwidth") ("stats", "show average bandwidth on exit") ("sizemap", "track packet size and display breakdown on exit. Use with multi_streamer option if CPU limits stream rate.") ("null", "run without writing to file") ("continue", "don't abort on a bad packet") ("skip-lo", "skip checking LO lock status") ("int-n", "tune USRP with integer-N tuning") ("multi_streamer", "Create a separate streamer per channel.") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << "UHD RX samples to file " << desc << std::endl; std::cout << std::endl << "This application streams data from a single channel of a USRP " "device to a file.\n" << std::endl; return ~0; } bool bw_summary = vm.count("progress") > 0; bool stats = vm.count("stats") > 0; bool null = vm.count("null") > 0; bool enable_size_map = vm.count("sizemap") > 0; bool continue_on_bad_packet = vm.count("continue") > 0; bool multithread = vm.count("multi_streamer") > 0; bool enable_multiple_files = (file_duration > 0); if (enable_size_map) std::cout << "Packet size tracking enabled - will only recv one packet at a time!" << std::endl; // Create a usrp device std::cout << "Creating the usrp device with: " << args << "..." << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // Parse channel selection string boost::split(channel_strings, channels, boost::is_any_of("\"',")); for (size_t ch = 0; ch < channel_strings.size(); ch++) { try { int chan = std::stoi(channel_strings[ch]); if (chan >= static_cast<int>(usrp->get_rx_num_channels()) || chan < 0) { throw std::runtime_error("Invalid channel(s) specified."); } else { channel_list.push_back(static_cast<size_t>(chan)); } } catch (std::invalid_argument const& c) { throw std::runtime_error("Invalid channel(s) specified."); } catch (std::out_of_range const& c) { throw std::runtime_error("Invalid channel(s) specified."); } } // Lock mboard clocks if (vm.count("ref")) { usrp->set_clock_source(ref); usrp->set_time_source(ref); } // Set subdevice spec if (vm.count("subdev")) { usrp->set_rx_subdev_spec(subdev); } std::cout << "Using Device: " << usrp->get_pp_string() << std::endl; // set the sample rate if (rate <= 0.0) { std::cerr << "Please specify a valid sample rate" << std::endl; return ~0; } std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl; usrp->set_rx_rate(rate, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate(channel_list[0]) / 1e6) << std::endl << std::endl; // set the center frequency if (vm.count("freq")) { // with default of 0.0 this will always be true std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl; std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset / 1e6) << std::endl; uhd::tune_request_t tune_request(freq, lo_offset); if (vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer"); for (size_t chan : channel_list) usrp->set_rx_freq(tune_request, chan); std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the rf gain if (vm.count("gain")) { std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl; usrp->set_rx_gain(gain, uhd::usrp::multi_usrp::ALL_CHANS); std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain(channel_list[0]) << std::endl << std::endl; } // set the IF filter bandwidth if (vm.count("bw")) { std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6) << std::endl; for (size_t chan : channel_list) usrp->set_rx_bandwidth(bw, chan); std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % (usrp->get_rx_bandwidth(channel_list[0]) / 1e6) << std::endl << std::endl; } // set the antenna if (vm.count("ant")) for (size_t chan : channel_list) usrp->set_rx_antenna(ant, chan); // Allow for some setup time std::this_thread::sleep_for(1s * setup_time); // Set the device timestamp to 0 usrp->set_time_now(uhd::time_spec_t(0.0)); // check Ref and LO Lock detect if (not vm.count("skip-lo")) { for (size_t channel : channel_list) { std::cout << "Locking LO on channel " << channel << std::endl; check_locked_sensor( usrp->get_rx_sensor_names(channel), "lo_locked", [usrp, channel](const std::string& sensor_name) { return usrp->get_rx_sensor(sensor_name, channel); }, setup_time); } if (ref == "mimo") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "mimo_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } if (ref == "external") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "ref_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); } if (ref == "gpsdo") { check_locked_sensor( usrp->get_mboard_sensor_names(0), "ref_locked", [usrp](const std::string& sensor_name) { return usrp->get_mboard_sensor(sensor_name); }, setup_time); // Synchronize USRP time to GPS time uhd::sensor_value_t gps_time = usrp->get_mboard_sensor("gps_time", 0); double usrp_time = gps_time.to_real(); // GPS time in seconds since epoch usrp->set_time_next_pps(uhd::time_spec_t(usrp_time + 1.0)); // Set time at next PPS std::this_thread::sleep_for(std::chrono::seconds(2)); // Wait for time to be set } } } if (total_num_samps == 0) { std::signal(SIGINT, &sig_int_handler); std::cout << "Press Ctrl + C to stop streaming..." << std::endl; } const double req_disk_rate = usrp->get_rx_rate(channel_list[0]) * channel_list.size() * uhd::convert::get_bytes_per_item(wirefmt); const double disk_rate_meas = disk_rate_check( uhd::convert::get_bytes_per_item(wirefmt), channel_list.size(), spb, file); if (disk_rate_meas > 0 && req_disk_rate >= disk_rate_meas) { std::cerr << boost::format( " Disk write test indicates that an overflow is likely to occur.\n" " Your write medium must sustain a rate of %0.3fMB/s,\n" " but write test returned write speed of %0.3fMB/s.\n" " The disk write rate is also affected by system load\n" " and OS/disk caching capacity.\n") % (req_disk_rate / 1e6) % (disk_rate_meas / 1e6); } std::vector<size_t> chans_in_thread; std::vector<double> rates(channel_list.size()); #define recv_to_file_args(format) \ (usrp, \ format, \ wirefmt, \ chans_in_thread, \ channel_list.size(), \ multithread ? "ch" + std::to_string(chans_in_thread[0]) + "_" + file : file, \ spb, \ total_num_samps, \ rates[i], \ total_time, \ stats, \ null, \ enable_size_map, \ continue_on_bad_packet, \ file_time, \ ref, \ th_prefix) for (size_t i = 0; i < channel_list.size(); i++) { std::string th_prefix = ""; if (multithread) { chans_in_thread.clear(); chans_in_thread.push_back(channel_list[i]); th_prefix = "Thread " + std::to_string(i) + ":\n"; } else { chans_in_thread = channel_list; } threads.push_back(std::thread([=, &rates]() { // recv to file if (wirefmt == "s16") { if (type == "double") recv_to_file<double> recv_to_file_args("f64"); else if (type == "float") recv_to_file<float> recv_to_file_args("f32"); else if (type == "short") recv_to_file<short> recv_to_file_args("s16"); else throw std::runtime_error("Unknown type " + type); } else { if (type == "double") recv_to_file<std::complex<double>> recv_to_file_args("fc64"); else if (type == "float") recv_to_file<std::complex<float>> recv_to_file_args("fc32"); else if (type == "short") recv_to_file<std::complex<short>> recv_to_file_args("sc16"); else throw std::runtime_error("Unknown type " + type); } })); if (!multithread) { break; } } if (total_time == 0) { if (total_num_samps > 0) { total_time = std::ceil(total_num_samps / usrp->get_rx_rate()); } } // Wait a bit extra for the first updates from each thread std::this_thread::sleep_for(500ms); const auto end_time = std::chrono::steady_clock::now() + (total_time - 1) * 1s; while (threads.size() > 0 && (std::chrono::steady_clock::now() < end_time || total_time == 0) && !stop_signal_called) { std::this_thread::sleep_for(1s); // Remove any threads that are finished for (size_t i = 0; i < threads.size(); i++) { if (!threads[i].joinable()) { // Thread is not joinable, i.e. it has finished and 'joined' already // Remove the thread from the list. threads.erase(threads.begin() + i); // Clear last bandwidth value after thread is finished rates[i] = 0; } } // Report the bandwidth of remaining threads if (bw_summary && threads.size() > 0) { const std::lock_guard<std::mutex> lock(recv_mutex); std::cout << "\t" << (std::accumulate(std::begin(rates), std::end(rates), 0) / 1e6 / threads.size()) << " Msps" << std::endl; } } // join any remaining threads for (size_t i = 0; i < threads.size(); i++) { if (threads[i].joinable()) { threads[i].join(); } } // finished std::cout << std::endl << "Done!" << std::endl << std::endl; return EXIT_SUCCESS; }
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++
and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}