#include <uhd/convert.hpp>
#include <uhd/exception.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/filesystem.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/process.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <complex>
#include <csignal>
#include <fstream>
#include <iostream>
#include <numeric>
#include <regex>
#include <thread>
#include <condition_variable>
#include <mutex>
#include <queue>
#include <atomic>
#include <ctime>
#include <iomanip>
using namespace std::chrono_literals;
namespace po = boost::program_options;
const std::time_t GPS_UNIX_DIFF = 315964800;
const int GPS_UTC_OFFSET = 18;
std::mutex recv_mutex;
static bool stop_signal_called = false;
static bool overflow_message = true;
void sig_int_handler(int) {
stop_signal_called = true;
}
template <typename samp_type>
void recv_to_file(uhd::usrp::multi_usrp::sptr usrp,
const std::string& cpu_format,
const std::string& wire_format,
const std::vector<size_t>& channel_nums,
const size_t total_num_channels,
const std::string& file,
size_t samps_per_buff,
unsigned long long num_requested_samples,
double& bw,
double time_requested = 0.0,
bool stats = false,
bool null = false,
bool enable_size_map = false,
bool continue_on_bad_packet = false,
double file_time_requested = 0.0,
const std::string& ref = "",
bool enable_multiple_files = false,
const std::string& thread_prefix = "")
) {
// Total number of samples to receive (0 means continuous)
unsigned long long num_requested_samples = 0;
unsigned long long num_total_samps = 0;
// Create a receive streamer
uhd::stream_args_t stream_args(cpu_format, wire_format);
stream_args.channels = channel_nums;
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
// Create a buffer pool
const size_t num_buffers = 20; // Adjust as needed
struct Buffer {
std::vector<samp_type> data;
uhd::rx_metadata_t metadata;
};
std::vector<Buffer> buffer_pool(num_buffers, Buffer{std::vector<samp_type>(samps_per_buff), uhd::rx_metadata_t()});
// Synchronization primitives
std::mutex mtx;
std::condition_variable cv;
std::queue<size_t> free_buffers; // Indices of free buffers
std::queue<size_t> full_buffers; // Indices of buffers ready to write
for (size_t i = 0; i < num_buffers; ++i) {
free_buffers.push(i);
}
std::atomic<size_t> active_write_threads(0);
// File management variables
std::ofstream outfile;
std::string current_filename;
size_t buffers_in_current_file = 0;
size_t buffers_per_file = (file_time_requested > 0) ?
static_cast<size_t>(usrp->get_rx_rate(total_num_channels / 1e6) * file_time_requested / samps_per_buff) : 0;
// Function to get timestamp for filename
auto get_timestamp = [&](const uhd::rx_metadata_t& md) {
std::time_t timestamp;
if (ref == "gpsdo" && md.has_time_spec && md.time_spec.get_full_secs() > 0) {
// Use USRP time synced with GPSDO
timestamp = static_cast<std::time_t>(md.time_spec.get_full_secs()) + GPS_UNIX_DIFF - GPS_UTC_OFFSET;
} else {
// Use system time
timestamp = std::time(nullptr);
}
// Adjust for Singapore Time (UTC+8)
timestamp += 8 * 3600;
std::ostringstream oss;
std::tm tm = *std::gmtime(×tamp);
oss << std::put_time(&tm, "%d%m%Y_%Hhr%Mmin%Ss");
return oss.str();
};
std::cout << "Started Streaming...." << std::endl;
// Receive thread
std::thread recv_thread([&]() {
uhd::rx_metadata_t md;
size_t buffer_index;
size_t num_rx_samps;
// Issue stream command
uhd::stream_cmd_t stream_cmd((num_requested_samples == 0) ?
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS :
uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = size_t(num_requested_samples);
stream_cmd.stream_now = false;
stream_cmd.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1);
rx_stream->issue_stream_cmd(stream_cmd);
typedef std::map<size_t, size_t> SizeMap;
SizeMap mapSizes;
const auto start_time = std::chrono::steady_clock::now();
const auto stop_time = start_time + (1s * time_requested);
// Track time and samps between updating the BW summary
auto last_update = start_time;
unsigned long long last_update_samps = 0;
while (not stop_signal_called
and (num_requested_samples != num_total_samps or num_requested_samples == 0)
and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) {
const auto now = std::chrono::steady_clock::now();
// Get a free buffer
{
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]() { return !free_buffers.empty() || stop_signal_called; });
if (stop_signal_called break;
buffer_index = free_buffers.front();
free_buffers.pop();
}
// Receive samples into buffer
size_t num_rx_samps = rx_stream->recv(&buffer_pool[buffer_index].data.front(), samps_per_buff, md, 3.0);
buffer_pool[buffer_index].metadata = md;
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << std::endl
<< thread_prefix << "Timeout while streaming" << std::endl;
if (++retry_count > MAX_RETRIES) {
std::cerr << "Maximum retries reached. Exiting... " << std::endl;
break;
}
continue;
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
const std::lock_guard<std::mutex> lock(recv_mutex);
if (overflow_message) {
overflow_message = false;
std::cerr
<< boost::format(
"Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of %0.3fMB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n")
% (usrp->get_rx_rate(channel_nums[0]) * total_num_channels
* sizeof(samp_type) / 1e6);
}
continue;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
const std::lock_guard<std::mutex> lock(recv_mutex);
std::string error = thread_prefix + "Receiver error: " + md.strerror();
if (continue_on_bad_packet) {
std::cerr << error << std::endl;
continue;
}
else
throw std::runtime_error(error);
}
if (enable_size_map) {
const std::lock_guard<std::mutex> lock(recv_mutex);
SizeMap::iterator it = mapSizes.find(num_rx_samps);
if (it == mapSizes.end())
mapSizes[num_rx_samps] = 0;
mapSizes[num_rx_samps] += 1;
}
num_total_samps += num_rx_samps;
last_update_samps += num_rx_samps;
const auto time_since_last_update = now - last_update;
if (time_since_last_update > 1s) {
const std::lock_guard<std::mutex> lock(recv_mutex);
const double time_since_last_update_s =
std::chrono::duration<double>(time_since_last_update).count();
bw = double(last_update_samps) / time_since_last_update_s;
last_update_samps = 0;
last_update = now;
}
// Add buffer to full buffers queue
{
std::unique_lock<std::mutex> lock(mtx);
full_buffers.push(buffer_index);
}
cv.notify_one();
}
const auto actual_stop_time = std::chrono::steady_clock::now();
stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
rx_stream->issue_stream_cmd(stream_cmd);
// Signal to write thread to stop
stop_signal.store(true);
cv.notify_all();
if (stats) {
const std::lock_guard<std::mutex> lock(recv_mutex);
std::cout << std::endl;
const double actual_duration_seconds =
std::chrono::duration<float>(actual_stop_time - start_time).count();
std::cout << boost::format("%sReceived %d samples in %f seconds") % thread_prefix
% num_total_samps % actual_duration_seconds
<< std::endl;
if (enable_size_map) {
std::cout << std::endl;
std::cout << "Packet size map (bytes: count)" << std::endl;
for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++)
std::cout << it->first << ":\t" << it->second << std::endl;
}
}
});
// Write thread
std::thread write_thread([&]() {
size_t buffer_index;
while (!stop_signal_called || !full_buffers.empty()) {
// Get a full buffer
{
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]() { return !full_buffers.empty() || stop_signal_called; });
if (full_buffers.empty()) continue;
buffer_index = full_buffers.front();
full_buffers.pop();
active_write_threads++;
}
// Open new file if needed
if (enable_multiple_files && (!outfile.is_open() || (file_time_requested > 0 && buffers_in_current_file >= buffers_per_file))) {
// Close previous file
if (outfile.is_open()) {
outfile.close();
}
// Get timestamp from metadata
uhd::rx_metadata_t md = buffer_pool[buffer_index].metadata;
std::string timestamp = get_timestamp(md);
current_filename = timestamp + ".dat";
outfile.open(current_filename.c_str(), std::ofstream::binary);
buffers_in_current_file = 0;
} else if (!outfile.is_open()) {
// Open file if not open
current_filename = file + ".dat";
outfile.open(current_filename.c_str(), std::ofstream::binary);
}
// Write buffer to file
outfile.write(reinterpret_cast<const char*>(&buffer_pool[buffer_index].data.front()), samps_per_buff * sizeof(samp_type));
buffers_in_current_file++;
// Return buffer to free buffers queue
{
std::unique_lock<std::mutex> lock(mtx);
free_buffers.push(buffer_index);
active_write_threads--;
}
cv.notify_one();
}
// Close file
if (outfile.is_open()) {
outfile.close();
}
});
// Wait for receive thread to finish
recv_thread.join();
// After receiving is finished, report active write threads
size_t remaining_buffers;
{
std::unique_lock<std::mutex> lock(mtx);
remaining_buffers = full_buffers.size();
}
if(remaining_buffers > 0){
std::cout << "Received is finished, active write threads before sleep: " << remaining_buffers << std::endl;
// Wait for write thread to finish processing remaining buffers
while (remaining_buffers > 0) {
std::this_thread::sleep_for(std::chrono::seconds(2));
{
std::unique_lock<std::mutex> lock(mtx);
remaining_buffers = full_buffers.size();
}
if (remaining_buffers > 0) {
std::cout << "Sleeping 2 seconds as there are active threads..." << std::endl;
std::cout << "Active write threads: " << remaining_buffers << std::endl;
}
}
}
// Signal to write thread to stop if not already
stop_signal.store(true);
cv.notify_all();
// Wait for write thread to finish
write_thread.join();
// Confirm that all write threads are finished
std::cout << "Received is finished, active write threads before sleep: 0" << std::endl;
}
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string args, file, type, ant, subdev, ref, wirefmt, channels;
size_t total_num_samps, spb;
double rate, freq, gain, bw, total_time, setup_time, lo_offset, file_time;
std::vector<std::thread> threads;
std::vector<size_t> channel_list;
std::vector<std::string> channel_strings;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
("type", po::value<std::string>(&type)->default_value("short"), "sample type: double, float, or short")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
("total_duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive per loop")
("file_duration", po::value<double>(&file_time)->default_value(1), "total number of seconds to receive per file")
("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
("rate", po::value<double>(&rate)->default_value(1e6), "rate of incoming samples")
("freq", po::value<double>(&freq)->default_value(0.0), "RF center frequency in Hz")
("lo-offset", po::value<double>(&lo_offset)->default_value(0.0),
"Offset for frontend LO in Hz (optional)")
("gain", po::value<double>(&gain), "gain for the RF chain")
("ant", po::value<std::string>(&ant), "antenna selection")
("subdev", po::value<std::string>(&subdev), "subdevice specification")
("channels,channel", po::value<std::string>(&channels)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
("ref", po::value<std::string>(&ref), "reference source (internal, external, mimo)")
("wirefmt", po::value<std::string>(&wirefmt)->default_value("sc16"), "wire format (sc8, sc16 or s16)")
("setup", po::value<double>(&setup_time)->default_value(1.0), "seconds of setup time")
("progress", "periodically display short-term bandwidth")
("stats", "show average bandwidth on exit")
("sizemap", "track packet size and display breakdown on exit. Use with multi_streamer option if CPU limits stream rate.")
("null", "run without writing to file")
("continue", "don't abort on a bad packet")
("skip-lo", "skip checking LO lock status")
("int-n", "tune USRP with integer-N tuning")
("multi_streamer", "Create a separate streamer per channel.")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << "UHD RX samples to file " << desc << std::endl;
std::cout << std::endl
<< "This application streams data from a single channel of a USRP "
"device to a file.\n"
<< std::endl;
return ~0;
}
bool bw_summary = vm.count("progress") > 0;
bool stats = vm.count("stats") > 0;
bool null = vm.count("null") > 0;
bool enable_size_map = vm.count("sizemap") > 0;
bool continue_on_bad_packet = vm.count("continue") > 0;
bool multithread = vm.count("multi_streamer") > 0;
bool enable_multiple_files = (file_duration > 0);
if (enable_size_map)
std::cout << "Packet size tracking enabled - will only recv one packet at a time!"
<< std::endl;
// Create a usrp device
std::cout << "Creating the usrp device with: " << args << "..." << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
// Parse channel selection string
boost::split(channel_strings, channels, boost::is_any_of("\"',"));
for (size_t ch = 0; ch < channel_strings.size(); ch++) {
try {
int chan = std::stoi(channel_strings[ch]);
if (chan >= static_cast<int>(usrp->get_rx_num_channels()) || chan < 0) {
throw std::runtime_error("Invalid channel(s) specified.");
}
else {
channel_list.push_back(static_cast<size_t>(chan));
}
}
catch (std::invalid_argument const& c) {
throw std::runtime_error("Invalid channel(s) specified.");
}
catch (std::out_of_range const& c) {
throw std::runtime_error("Invalid channel(s) specified.");
}
}
// Lock mboard clocks
if (vm.count("ref")) {
usrp->set_clock_source(ref);
usrp->set_time_source(ref);
}
// Set subdevice spec
if (vm.count("subdev")) {
usrp->set_rx_subdev_spec(subdev);
}
std::cout << "Using Device: " << usrp->get_pp_string() << std::endl;
// set the sample rate
if (rate <= 0.0) {
std::cerr << "Please specify a valid sample rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl;
usrp->set_rx_rate(rate, uhd::usrp::multi_usrp::ALL_CHANS);
std::cout << boost::format("Actual RX Rate: %f Msps...")
% (usrp->get_rx_rate(channel_list[0]) / 1e6)
<< std::endl
<< std::endl;
// set the center frequency
if (vm.count("freq")) { // with default of 0.0 this will always be true
std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6)
<< std::endl;
std::cout << boost::format("Setting RX LO Offset: %f MHz...") % (lo_offset / 1e6)
<< std::endl;
uhd::tune_request_t tune_request(freq, lo_offset);
if (vm.count("int-n"))
tune_request.args = uhd::device_addr_t("mode_n=integer");
for (size_t chan : channel_list)
usrp->set_rx_freq(tune_request, chan);
std::cout << boost::format("Actual RX Freq: %f MHz...")
% (usrp->get_rx_freq(channel_list[0]) / 1e6)
<< std::endl
<< std::endl;
}
// set the rf gain
if (vm.count("gain")) {
std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
usrp->set_rx_gain(gain, uhd::usrp::multi_usrp::ALL_CHANS);
std::cout << boost::format("Actual RX Gain: %f dB...")
% usrp->get_rx_gain(channel_list[0])
<< std::endl
<< std::endl;
}
// set the IF filter bandwidth
if (vm.count("bw")) {
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (bw / 1e6)
<< std::endl;
for (size_t chan : channel_list)
usrp->set_rx_bandwidth(bw, chan);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...")
% (usrp->get_rx_bandwidth(channel_list[0]) / 1e6)
<< std::endl
<< std::endl;
}
// set the antenna
if (vm.count("ant"))
for (size_t chan : channel_list)
usrp->set_rx_antenna(ant, chan);
// Allow for some setup time
std::this_thread::sleep_for(1s * setup_time);
// Set the device timestamp to 0
usrp->set_time_now(uhd::time_spec_t(0.0));
// check Ref and LO Lock detect
if (not vm.count("skip-lo")) {
for (size_t channel : channel_list) {
std::cout << "Locking LO on channel " << channel << std::endl;
check_locked_sensor(
usrp->get_rx_sensor_names(channel),
"lo_locked",
[usrp, channel](const std::string& sensor_name) {
return usrp->get_rx_sensor(sensor_name, channel);
},
setup_time);
}
if (ref == "mimo") {
check_locked_sensor(
usrp->get_mboard_sensor_names(0),
"mimo_locked",
[usrp](const std::string& sensor_name) {
return usrp->get_mboard_sensor(sensor_name);
},
setup_time);
}
if (ref == "external") {
check_locked_sensor(
usrp->get_mboard_sensor_names(0),
"ref_locked",
[usrp](const std::string& sensor_name) {
return usrp->get_mboard_sensor(sensor_name);
},
setup_time);
}
if (ref == "gpsdo") {
check_locked_sensor(
usrp->get_mboard_sensor_names(0),
"ref_locked",
[usrp](const std::string& sensor_name) {
return usrp->get_mboard_sensor(sensor_name);
},
setup_time);
// Synchronize USRP time to GPS time
uhd::sensor_value_t gps_time = usrp->get_mboard_sensor("gps_time", 0);
double usrp_time = gps_time.to_real(); // GPS time in seconds since epoch
usrp->set_time_next_pps(uhd::time_spec_t(usrp_time + 1.0)); // Set time at next PPS
std::this_thread::sleep_for(std::chrono::seconds(2)); // Wait for time to be set
}
}
}
if (total_num_samps == 0) {
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
}
const double req_disk_rate = usrp->get_rx_rate(channel_list[0]) * channel_list.size()
* uhd::convert::get_bytes_per_item(wirefmt);
const double disk_rate_meas = disk_rate_check(
uhd::convert::get_bytes_per_item(wirefmt), channel_list.size(), spb, file);
if (disk_rate_meas > 0 && req_disk_rate >= disk_rate_meas) {
std::cerr
<< boost::format(
" Disk write test indicates that an overflow is likely to occur.\n"
" Your write medium must sustain a rate of %0.3fMB/s,\n"
" but write test returned write speed of %0.3fMB/s.\n"
" The disk write rate is also affected by system load\n"
" and OS/disk caching capacity.\n")
% (req_disk_rate / 1e6) % (disk_rate_meas / 1e6);
}
std::vector<size_t> chans_in_thread;
std::vector<double> rates(channel_list.size());
#define recv_to_file_args(format) \
(usrp, \
format, \
wirefmt, \
chans_in_thread, \
channel_list.size(), \
multithread ? "ch" + std::to_string(chans_in_thread[0]) + "_" + file : file, \
spb, \
total_num_samps, \
rates[i], \
total_time, \
stats, \
null, \
enable_size_map, \
continue_on_bad_packet, \
file_time, \
ref, \
th_prefix)
for (size_t i = 0; i < channel_list.size(); i++) {
std::string th_prefix = "";
if (multithread) {
chans_in_thread.clear();
chans_in_thread.push_back(channel_list[i]);
th_prefix = "Thread " + std::to_string(i) + ":\n";
}
else {
chans_in_thread = channel_list;
}
threads.push_back(std::thread([=, &rates]() {
// recv to file
if (wirefmt == "s16") {
if (type == "double")
recv_to_file<double> recv_to_file_args("f64");
else if (type == "float")
recv_to_file<float> recv_to_file_args("f32");
else if (type == "short")
recv_to_file<short> recv_to_file_args("s16");
else
throw std::runtime_error("Unknown type " + type);
}
else {
if (type == "double")
recv_to_file<std::complex<double>> recv_to_file_args("fc64");
else if (type == "float")
recv_to_file<std::complex<float>> recv_to_file_args("fc32");
else if (type == "short")
recv_to_file<std::complex<short>> recv_to_file_args("sc16");
else
throw std::runtime_error("Unknown type " + type);
}
}));
if (!multithread) {
break;
}
}
if (total_time == 0) {
if (total_num_samps > 0) {
total_time = std::ceil(total_num_samps / usrp->get_rx_rate());
}
}
// Wait a bit extra for the first updates from each thread
std::this_thread::sleep_for(500ms);
const auto end_time = std::chrono::steady_clock::now() + (total_time - 1) * 1s;
while (threads.size() > 0
&& (std::chrono::steady_clock::now() < end_time || total_time == 0)
&& !stop_signal_called) {
std::this_thread::sleep_for(1s);
// Remove any threads that are finished
for (size_t i = 0; i < threads.size(); i++) {
if (!threads[i].joinable()) {
// Thread is not joinable, i.e. it has finished and 'joined' already
// Remove the thread from the list.
threads.erase(threads.begin() + i);
// Clear last bandwidth value after thread is finished
rates[i] = 0;
}
}
// Report the bandwidth of remaining threads
if (bw_summary && threads.size() > 0) {
const std::lock_guard<std::mutex> lock(recv_mutex);
std::cout << "\t"
<< (std::accumulate(std::begin(rates), std::end(rates), 0) / 1e6
/ threads.size())
<< " Msps" << std::endl;
}
}
// join any remaining threads
for (size_t i = 0; i < threads.size(); i++) {
if (threads[i].joinable()) {
threads[i].join();
}
}
// finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
Write, Run & Share C++ code online using OneCompiler's C++ online compiler for free. It's one of the robust, feature-rich online compilers for C++ language, running on the latest version 17. Getting started with the OneCompiler's C++ compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C++ and start coding!
OneCompiler's C++ online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
#include <iostream>
#include <string>
using namespace std;
int main()
{
string name;
cout << "Enter name:";
getline (cin, name);
cout << "Hello " << name;
return 0;
}
C++ is a widely used middle-level programming language.
When ever you want to perform a set of operations based on a condition If-Else is used.
if(conditional-expression) {
//code
}
else {
//code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression){
case value1:
// code
break; // optional
case value2:
// code
break; // optional
......
default:
code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Function is a sub-routine which contains set of statements. Usually functions are written when multiple calls are required to same set of statements which increases re-usuability and modularity. Function gets run only when it is called.
return_type function_name(parameters);
function_name (parameters)
return_type function_name(parameters) {
// code
}