using System; using System.Collections.Generic; namespace DoFactory.GangOfFour.Builder.RealWorld { public class MainApp { public static void Main() { VehicleBuilder builder; Shop shop = new Shop(); builder = new ScooterBuilder(); shop.Construct(builder); builder.Vehicle.Show(); builder = new CarBuilder(); shop.Construct(builder); builder.Vehicle.Show(); builder = new MotorCycleBuilder(); shop.Construct(builder); builder.Vehicle.Show(); Console.ReadKey(); } } class Shop { public void Construct(VehicleBuilder vehicleBuilder) { vehicleBuilder.BuildFrame(); vehicleBuilder.BuildEngine(); vehicleBuilder.BuildWheels(); vehicleBuilder.BuildDoors(); } } abstract class VehicleBuilder { protected Vehicle vehicle; public Vehicle Vehicle { get { return vehicle; } } public abstract void BuildFrame(); public abstract void BuildEngine(); public abstract void BuildWheels(); public abstract void BuildDoors(); } class MotorCycleBuilder : VehicleBuilder { public MotorCycleBuilder() { vehicle = new Vehicle("MotorCycle"); } public override void BuildFrame() { vehicle["frame"] = "MotorCycle Frame"; } public override void BuildEngine() { vehicle["engine"] = "500 cc"; } public override void BuildWheels() { vehicle["wheels"] = "2"; } public override void BuildDoors() { vehicle["doors"] = "0"; } } class CarBuilder : VehicleBuilder { public CarBuilder() { vehicle = new Vehicle("Car"); } public override void BuildFrame() { vehicle["frame"] = "Car Frame"; } public override void BuildEngine() { vehicle["engine"] = "2500 cc"; } public override void BuildWheels() { vehicle["wheels"] = "4"; } public override void BuildDoors() { vehicle["doors"] = "4"; } } class ScooterBuilder : VehicleBuilder { public ScooterBuilder() { vehicle = new Vehicle("Scooter"); } public override void BuildFrame() { vehicle["frame"] = "Scooter Frame"; } public override void BuildEngine() { vehicle["engine"] = "50 cc"; } public override void BuildWheels() { vehicle["wheels"] = "2"; } public override void BuildDoors() { vehicle["doors"] = "0"; } } class Vehicle { private string _vehicleType; private Dictionary<string,string> _parts = new Dictionary<string,string>(); public Vehicle(string vehicleType) { this._vehicleType = vehicleType; } public string this[string key] { get { return _parts[key]; } set { _parts[key] = value; } } public void Show() { Console.WriteLine("\n---------------------------"); Console.WriteLine("Vehicle Type: {0}", _vehicleType); Console.WriteLine(" Frame : {0}", _parts["frame"]); Console.WriteLine(" Engine : {0}", _parts["engine"]); Console.WriteLine(" #Wheels: {0}", _parts["wheels"]); Console.WriteLine(" #Doors : {0}", _parts["doors"]); } } }
Write, Run & Share C# code online using OneCompiler's C# online compiler for free. It's one of the robust, feature-rich online compilers for C# language, running on the latest version 8.0. Getting started with the OneCompiler's C# compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as C#
and start coding.
OneCompiler's C# online compiler supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample program which takes name as input and print your name with hello.
using System;
namespace Sample
{
class Test
{
public static void Main(string[] args)
{
string name;
name = Console.ReadLine();
Console.WriteLine("Hello {0} ", name);
}
}
}
C# is a general purpose object-oriented programming language by Microsoft. Though initially it was developed as part of .net but later it was approved by ECMA and ISO standards.
You can use C# to create variety of applications, like web, windows, mobile, console applications and much more using Visual studio.
Data Type | Description | Range | size |
---|---|---|---|
int | To store integers | -2,147,483,648 to 2,147,483,647 | 4 bytes |
double | to store large floating point numbers with decimals | can store 15 decimal digits | 8 bytes |
float | to store floating point numbers with decimals | can store upto 7 decimal digits | 4 bytes |
char | to store single characters | - | 2 bytes |
string | to stores text | - | 2 bytes per character |
bool | to stores either true or false | - | 1 bit |
datatype variable-name = value;
When ever you want to perform a set of operations based on a condition or set of few conditions IF-ELSE is used.
if(conditional-expression) {
// code
}
else {
// code
}
You can also use if-else for nested Ifs and If-Else-If ladder when multiple conditions are to be performed on a single variable.
Switch is an alternative to If-Else-If ladder.
switch(conditional-expression) {
case value1:
// code
break; // optional
case value2:
// code
break; // optional
...
default:
// code to be executed when all the above cases are not matched;
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement) {
// code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while(condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
Array is a collection of similar data which is stored in continuous memory addresses. Array values can be fetched using index. Index starts from 0 to size-1.
data-type[] array-name;
Method is a set of statements which gets executed only when they are called. Call the method name in the main function to execute the method.
static void method-name()
{
// code to be executed
}