import java.util.*; public class Main { public static void main(String[] args) { AVL myAVL = new AVL(); myAVL.insert(10); myAVL.insert(9); myAVL.insert(8); myAVL.insert(7); myAVL.insert(6); myAVL.insert(5); myAVL.insert(4); myAVL.insert(3); myAVL.insert(2); myAVL.insert(1); myAVL.insert(15); // Trigger left-right rotation //myAVL.insert(14); Queue<TreeNode> q = new LinkedList<>(); q.add(myAVL.root); int level = 1; while (q.size() != 0) { int currentLevelSize = q.size(); // System.out.println("Current level is " + level); for (int i = 0; i < currentLevelSize; i++) { TreeNode currNode = q.poll(); System.out.print(currNode.val + " "); if (currNode.left != null) q.add(currNode.left); if (currNode.right != null) q.add(currNode.right); // System.out.println(currNode.val); } System.out.println(""); level++; } } } /* AVL Tree Node Definition */ class TreeNode { public int val; // Node value public int height; // Node height, default 0 public TreeNode left; // left child node, default null node public TreeNode right; // right child node, default null node public TreeNode(int x) { val = x; } } class AVL { TreeNode root; /* Obtain Node's Height */ int height(TreeNode node) { // Null node's height is -1, leaf node's height is 0 return node == null ? -1 : node.height; } /* Update Node Height */ void updateHeight(TreeNode node) { // Node's height is the height of its higher subtree + 1 node.height = Math.max(height(node.left), height(node.right)) + 1; } /* Obtain Balance Factor */ int balanceFactor(TreeNode node) { // Null node has a balance factor of 0 if (node == null) return 0; // Node's balance factor = left subtree's height - right subtree's height return height(node.left) - height(node.right); } /* Right Rotation */ TreeNode rightRotate(TreeNode node) { TreeNode child = node.left; TreeNode grandChild = child.right; // Right rotate the node to its right child node child.right = node; node.left = grandChild; // Update the height of the node and the child node(the parent node after // right rotation) updateHeight(node); updateHeight(child); // Return the child node return child; } /* Left Rotation */ TreeNode leftRotate(TreeNode node) { TreeNode child = node.right; TreeNode grandChild = child.left; // Left rotate the node to its left child node child.left = node; node.right = grandChild; // Update the height of the node and the child node(the parent node after // left rotation) updateHeight(node); updateHeight(child); // Return the child node return child; } /* Perform Self-balancing */ TreeNode rotate(TreeNode node) { // obtain the balance factor of current node int balanceFactor = balanceFactor(node); // Skewed to left if (balanceFactor > 1) { if (balanceFactor(node.left) >= 0) { // right rotation return rightRotate(node); } else { // left-right rotation node.left = leftRotate(node.left); return rightRotate(node); } } // Skewed to right if (balanceFactor < -1) { if (balanceFactor(node.right) <= 0) { // left rotation return leftRotate(node); } else { // right-left rotation node.right = rightRotate(node.right); return leftRotate(node); } } // already balanced, no changes needed return node; } /* Node Insertion */ void insert(int val) { root = insertHelper(root, val); } /* Node Insertion using recursion(dfs helper) */ TreeNode insertHelper(TreeNode node, int val) { if (node == null) return new TreeNode(val); /* Find the insertion point - a null node, and replace it with the new Node * to perform node insertion */ if (val < node.val) node.left = insertHelper(node.left, val); else if (val > node.val) node.right = insertHelper(node.right, val); else return node; // Abort the node insertion if it is a duplicated node updateHeight( node); // Update the height of node all the way back to the root node /* AVL Tree rotation for self-balancing */ node = rotate(node); // Return the root node of the subtree return node; } /* Node Deletion */ void remove(int val) { root = removeHelper(root, val); } /* Node Deletion using recursion(dfs helper) */ TreeNode removeHelper(TreeNode node, int val) { if (node == null) return null; /* 1. Find node that is the desired node */ if (val < node.val) // Since the value of deleted node is smaller, go to left subtree to find // the deleted node node.left = removeHelper(node.left, val); else if (val > node.val) // Since the value of deleted node is bigger, go to right subtree to find // the deleted node node.right = removeHelper(node.right, val); else { // deleted node found! // The degree of deleted node is 0 or 1 if (node.left == null || node.right == null) { TreeNode child = node.left != null ? node.left : node.right; // when degree is 0 ,delete current node and return null node if (child == null) return null; // when degree is 1, replace current node with its child node else node = child; } else { // The degree of deleted node is 2 TreeNode temp = node.right; while (temp.left != null) { temp = temp.left; } // replace the current node with the smallest node from its right // subtree node.right = removeHelper(node.right, temp.val); node.val = temp.val; } } updateHeight(node); // update the node height recursively /* AVL Tree rotation for self-balancing */ node = rotate(node); return node; // return the root node of the subtree } }