/*
 * JavaScript implementation of brUncompress.
 */

// {{{ Constants

var ST_UNDEF = 0
var ST_BL = 1
var ST_U4 = 2
var ST_I4 = 3
var ST_U8 = 4
var ST_I8 = 5
var ST_U16 = 6
var ST_I16 = 7
var ST_U24 = 8
var ST_I24 = 9
var ST_U32 = 10
var ST_I32 = 11
var ST_FL = 12

var ST = {}
ST[ST_UNDEF] = 0
ST[ST_BL] = 1
ST[ST_U4] = 4
ST[ST_I4] = 4
ST[ST_U8] = 8
ST[ST_I8] = 8
ST[ST_U16] = 16
ST[ST_I16] = 16
ST[ST_U24] = 24
ST[ST_I24] = 24
ST[ST_U32] = 32
ST[ST_I32] = 32
ST[ST_FL] = 32

var BR_HUFF_MAX_INDEX_TABLE = 14
var NUMBER_OF_SERIES = 16

var HUFF = [
  [
    { sz: 2, lbl: 0x000 },
    { sz: 2, lbl: 0x001 },
    { sz: 2, lbl: 0x003 },
    { sz: 3, lbl: 0x005 },
    { sz: 4, lbl: 0x009 },
    { sz: 5, lbl: 0x011 },
    { sz: 6, lbl: 0x021 },
    { sz: 7, lbl: 0x041 },
    { sz: 8, lbl: 0x081 },
    { sz: 10, lbl: 0x200 },
    { sz: 11, lbl: 0x402 },
    { sz: 11, lbl: 0x403 },
    { sz: 11, lbl: 0x404 },
    { sz: 11, lbl: 0x405 },
    { sz: 11, lbl: 0x406 },
    { sz: 11, lbl: 0x407 }
  ],
  [
    { sz: 7, lbl: 0x06f },
    { sz: 5, lbl: 0x01a },
    { sz: 4, lbl: 0x00c },
    { sz: 3, lbl: 0x003 },
    { sz: 3, lbl: 0x007 },
    { sz: 2, lbl: 0x002 },
    { sz: 2, lbl: 0x000 },
    { sz: 3, lbl: 0x002 },
    { sz: 6, lbl: 0x036 },
    { sz: 9, lbl: 0x1bb },
    { sz: 9, lbl: 0x1b9 },
    { sz: 10, lbl: 0x375 },
    { sz: 10, lbl: 0x374 },
    { sz: 10, lbl: 0x370 },
    { sz: 11, lbl: 0x6e3 },
    { sz: 11, lbl: 0x6e2 }
  ],
  [
    { sz: 4, lbl: 0x009 },
    { sz: 3, lbl: 0x005 },
    { sz: 2, lbl: 0x000 },
    { sz: 2, lbl: 0x001 },
    { sz: 2, lbl: 0x003 },
    { sz: 5, lbl: 0x011 },
    { sz: 6, lbl: 0x021 },
    { sz: 7, lbl: 0x041 },
    { sz: 8, lbl: 0x081 },
    { sz: 10, lbl: 0x200 },
    { sz: 11, lbl: 0x402 },
    { sz: 11, lbl: 0x403 },
    { sz: 11, lbl: 0x404 },
    { sz: 11, lbl: 0x405 },
    { sz: 11, lbl: 0x406 },
    { sz: 11, lbl: 0x407 }
  ]
]

// }}}

// {{{ Polyfills
Math.trunc =
  Math.trunc ||
  function(x) {
    if (isNaN(x)) {
      return NaN
    }
    if (x > 0) {
      return Math.floor(x)
    }
    return Math.ceil(x)
  }
// }}}

/**
 * brUncompress main function
 */
function brUncompress(tagsz, argList, hexString, batch_absolute_timestamp) {
  var out = initResult()
  var buffer = createBuffer(parseHexString(hexString))
  var flag = generateFlag(buffer.getNextSample(ST_U8))

  out.batch_counter = buffer.getNextSample(ST_U8, 3)
  buffer.getNextSample(ST_U8, 1)

  var temp = prePopulateOutput(out, buffer, argList, flag, tagsz)
  var last_timestamp = temp.last_timestamp
  var index_of_the_first_sample = temp.index_of_the_first_sample

  if (flag.hasSample) {
    last_timestamp = uncompressSamplesData(
      out,
      buffer,
      index_of_the_first_sample,
      argList,
      last_timestamp,
      flag,
      tagsz
    )
  }

  out.batch_relative_timestamp = extractTimestampFromBuffer(
    buffer,
    last_timestamp
  )
  return adaptToExpectedFormat(out, argList, batch_absolute_timestamp)
}

/////////////// Sub functions ///////////////

/**
 * Init br_uncompress result data structure
 */
function initResult() {
  var series = [],
    i = 0
  while (i < NUMBER_OF_SERIES) {
    series.push({
      codingType: 0,
      codingTable: 0,
      resolution: null,
      uncompressSamples: []
    })
    i += 1
  }
  return {
    batch_counter: 0,
    batch_relative_timestamp: 0,
    series: series
  }
}

/**
 * Function to create a buffer from a byteArray. Allow to read sample from the
 * byteArray to extract data.
 */
function createBuffer(byteArray) {
  /**
   * Retrieve the pattern for HUFF table lookup
   */
  function bitsBuf2HuffPattern(byteArray, index, nb_bits) {
    var sourceBitStart = index
    var sz = nb_bits - 1
    if (byteArray.length * 8 < sourceBitStart + nb_bits) {
      throw "Verify that dest buf is large enough"
    }
    var bittoread = 0
    var pattern = 0
    while (nb_bits > 0) {
      if (byteArray[sourceBitStart >> 3] & (1 << (sourceBitStart & 0x07))) {
        pattern |= 1 << (sz - bittoread)
      }
      nb_bits--
      bittoread++
      sourceBitStart++
    }
    return pattern
  }

  return {
    index: 0,
    byteArray: byteArray,
    getNextSample: function(sampleType, nbBitsInput) {
      var nbBits = nbBitsInput || ST[sampleType]
      var sourceBitStart = this.index
      this.index += nbBits
      if (sampleType === ST_FL && nbBits !== 32) {
        throw "Mauvais sampletype"
      }

      var u32 = 0
      var nbytes = Math.trunc((nbBits - 1) / 8) + 1
      var nbitsfrombyte = nbBits % 8
      if (nbitsfrombyte === 0 && nbytes > 0) {
        nbitsfrombyte = 8
      }

      while (nbytes > 0) {
        var bittoread = 0
        while (nbitsfrombyte > 0) {
          var idx = sourceBitStart >> 3
          if (this.byteArray[idx] & (1 << (sourceBitStart & 0x07))) {
            u32 |= 1 << ((nbytes - 1) * 8 + bittoread)
          }
          nbitsfrombyte--
          bittoread++
          sourceBitStart += 1
        }
        nbytes--
        nbitsfrombyte = 8
      }
      // Propagate the sign bit if 1
      if (
        (sampleType == ST_I4 || sampleType == ST_I8 ||sampleType == ST_I16 || sampleType == ST_I24) &&
        u32 & (1 << (nbBits - 1))
      ) {
        for (var i = nbBits; i < 32; i++) {
          u32 |= 1 << i
          nbBits++
        }
      }
      return u32
    },

    /**
     * Extract sz and bi from Huff table
     */
    getNextBifromHi: function(huff_coding) {
      for (var i = 2; i < 12; i++) {
        var lhuff = bitsBuf2HuffPattern(this.byteArray, this.index, i)
        for (var j = 0; j < HUFF[huff_coding].length; j++) {
          if (
            HUFF[huff_coding][j].sz == i &&
            lhuff == HUFF[huff_coding][j].lbl
          ) {
            this.index += i
            return j
          }
        }
      }
      throw "Bi not found in HUFF table"
    }
  }
}

/**
 * Convert the hex string given as parameter to a ByteArray
 */
function parseHexString(str) {
  str = str
    .split("")
    .filter(function(x) {
      return !isNaN(parseInt(x, 16))
    })
    .join("")
  var result = []
  while (str.length >= 2) {
    result.push(parseInt(str.substring(0, 2), 16))
    str = str.substring(2, str.length)
  }
  return result
}

/**
 * Generate a flag object from an integer value.
 */
function generateFlag(flagAsInt) {
  var binbase = flagAsInt.toString(2)

  // leftpad
  while (binbase.length < 8) {
    binbase = "0" + binbase
  }

  return {
    isCommonTimestamp: parseInt(binbase[binbase.length - 2], 2),
    hasSample: !parseInt(binbase[binbase.length - 3], 2),
    batch_req: parseInt(binbase[binbase.length - 4], 2),
    nb_of_type_measure: parseInt(binbase.substring(0, 4), 2)
  }
}

/**
 * Prepopulate output with relative timestamp and measure of the first sample
 * for each series.
 */
function prePopulateOutput(out, buffer, argList, flag, tagsz) {
  var currentTimestamp = 0
  var index_of_the_first_sample = 0
  for (var i = 0; i < flag.nb_of_type_measure; i++) {
    var tag = {
      size: tagsz,
      lbl: buffer.getNextSample(ST_U8, tagsz)
    }
    var sampleIndex = findIndexFromArgList(argList, tag)

    if (i == 0) {
      index_of_the_first_sample = sampleIndex
    }

    currentTimestamp = extractTimestampFromBuffer(buffer, currentTimestamp)
    out.series[sampleIndex] = computeSeries(
      buffer,
      argList[sampleIndex].sampletype,
      tag.lbl,
      currentTimestamp
    )
    if (flag.hasSample) {
      out.series[sampleIndex].codingType = buffer.getNextSample(ST_U8, 2)
      out.series[sampleIndex].codingTable = buffer.getNextSample(ST_U8, 2)
    }
  }
  return {
    last_timestamp: currentTimestamp,
    index_of_the_first_sample: index_of_the_first_sample
  }
}

/**
 * Initialize next series from buffer
 */
function computeSeries(buffer, sampletype, label, currentTimestamp) {
  return {
    uncompressSamples: [
      {
        data_relative_timestamp: currentTimestamp,
        data: {
          value: getMeasure(buffer, sampletype),
          label: label
        }
      }
    ],
    codingType: 0,
    codingTable: 0,
    resolution: null
  }
}

/**
 * Return the index of tag lbl in the argument list
 */
function findIndexFromArgList(argList, tag) {
  for (var i = 0; i < argList.length; i++) {
    if (argList[i].taglbl === tag.lbl) {
      return i
    }
  }
  throw "Cannot find index in argList"
}

/**
 * Extract a new time stamp using Huff table, optionnaly from a baseTimestamp
 */
function extractTimestampFromBuffer(buffer, baseTimestamp) {
  if (baseTimestamp) {
    var bi = buffer.getNextBifromHi(1)
    return computeTimestampFromBi(buffer, baseTimestamp, bi)
  }
  return buffer.getNextSample(ST_U32)
}

/**
 * Compute a new timestamp from a previous one, regarding bi value
 */
function computeTimestampFromBi(buffer, baseTimestamp, bi) {
  if (bi > BR_HUFF_MAX_INDEX_TABLE) {
    return buffer.getNextSample(ST_U32)
  }
  if (bi > 0) {
    return computeTimestampFromPositiveBi(buffer, baseTimestamp, bi)
  }
  return baseTimestamp
}

/**
 * Compute a new timestamp from a previous one, regarding posotive bi value
 */
function computeTimestampFromPositiveBi(buffer, baseTimestamp, bi) {
  return buffer.getNextSample(ST_U32, bi) + baseTimestamp + Math.pow(2, bi) - 1
}

/**
 * Extract the measure from the buffer, handling float case
 */

function getMeasure(buffer, sampletype) {
  var v = buffer.getNextSample(sampletype)
  return sampletype === ST_FL ? bytes2Float32(v) : v
}

/**
 * Convert bytes to a float32 representation.
 */
function bytes2Float32(bytes) {
  var sign = bytes & 0x80000000 ? -1 : 1,
    exponent = ((bytes >> 23) & 0xff) - 127,
    significand = bytes & ~(-1 << 23)

  if (exponent == 128) {
    return sign * (significand ? Number.NaN : Number.POSITIVE_INFINITY)
  }

  if (exponent == -127) {
    if (significand == 0) {
      return sign * 0.0
    }
    exponent = -126
    significand /= 1 << 22
  } else {
    significand = (significand | (1 << 23)) / (1 << 23)
  }

  return sign * significand * Math.pow(2, exponent)
}

/**
 * Uncompress samples data presenting common timestamp or separate timestamp
 */
function uncompressSamplesData(
  out,
  buffer,
  index_of_the_first_sample,
  argList,
  last_timestamp,
  flag,
  tagsz
) {
  if (flag.isCommonTimestamp) {
    return handleCommonTimestamp(
      out,
      buffer,
      index_of_the_first_sample,
      argList,
      flag,
      tagsz
    )
  }
  return handleSeparateTimestamp(
    out,
    buffer,
    argList,
    last_timestamp,
    flag,
    tagsz
  )
}

/**
 * Uncompress data in case of common timestamp
 */
function handleCommonTimestamp(
  out,
  buffer,
  index_of_the_first_sample,
  argList,
  flag,
  tagsz
) {
  //number of sample
  var nb_sample_to_parse = buffer.getNextSample(ST_U8, 8)
  var tag = {}

  var temp = initTimestampCommonTable(
    out,
    buffer,
    nb_sample_to_parse,
    index_of_the_first_sample
  )
  var timestampCommon = temp.timestampCommon
  var lastTimestamp = temp.lastTimestamp

  for (var j = 0; j < flag.nb_of_type_measure; j++) {
    var first_null_delta_value = 1
    tag.lbl = buffer.getNextSample(ST_U8, tagsz)
    var sampleIndex = findIndexFromArgList(argList, tag)
    for (var i = 0; i < nb_sample_to_parse; i++) {
      //Available bit
      var available = buffer.getNextSample(ST_U8, 1)
      if (available) {
        //Delta value
        var bi = buffer.getNextBifromHi(out.series[sampleIndex].codingTable)
        var currentMeasure = {
          data_relative_timestamp: 0,
          data: {}
        }
        if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
          var precedingValue =
            out.series[sampleIndex].uncompressSamples[
              out.series[sampleIndex].uncompressSamples.length - 1
            ].data.value
          if (bi > 0) {
            currentMeasure.data.value = completeCurrentMeasure(
              buffer,
              precedingValue,
              out.series[sampleIndex].codingType,
              argList[sampleIndex].resol,
              bi
            )
          } else {
            // (bi <= 0)
            if (first_null_delta_value) {
              // First value is yet recorded starting from the header
              first_null_delta_value = 0
              continue
            } else {
              currentMeasure.data.value = precedingValue
            }
          }
        } else {
          // bi > BR_HUFF_MAX_INDEX_TABLE
          currentMeasure.data.value = buffer.getNextSample(
            argList[sampleIndex].sampletype
          )
        }
        currentMeasure.data_relative_timestamp = timestampCommon[i]
        out.series[sampleIndex].uncompressSamples.push(currentMeasure)
      }
    }
  }
  return lastTimestamp
}

/**
 * Initialize common timestamp table. Returns the table and last calculated timestamp
 */
function initTimestampCommonTable(
  out,
  buffer,
  nbSampleToParse,
  firstSampleIndex
) {
  var timestampCommon = []
  var lastTimestamp = 0
  var timestampCoding = buffer.getNextSample(ST_U8, 2)
  for (var i = 0; i < nbSampleToParse; i++) {
    //delta timestamp
    var bi = buffer.getNextBifromHi(timestampCoding)
    if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
      if (i == 0) {
        timestampCommon.push(
          out.series[firstSampleIndex].uncompressSamples[0]
            .data_relative_timestamp
        )
      } else {
        if (bi > 0) {
          var precedingTimestamp = timestampCommon[i - 1]
          timestampCommon.push(
            buffer.getNextSample(ST_U32, bi) +
              precedingTimestamp +
              Math.pow(2, bi) -
              1
          )
        } else {
          timestampCommon.push(precedingTimestamp)
        }
      }
    } else {
      timestampCommon.push(buffer.getNextSample(ST_U32))
    }
    lastTimestamp = timestampCommon[i]
  }
  return {
    timestampCommon: timestampCommon,
    lastTimestamp: lastTimestamp
  }
}

/**
 * Complete current measure from the preceding one
 */
function completeCurrentMeasure(buffer, precedingValue, codingType, resol, bi) {
  var currentValue = buffer.getNextSample(ST_U16, bi)
  if (codingType === 0) {
    // ADLC
    return computeAdlcValue(currentValue, resol, precedingValue, bi)
  }
  if (codingType === 1) {
    // Positive
    return (currentValue + Math.pow(2, bi) - 1) * resol + precedingValue
  }
  // Negative
  return precedingValue - (currentValue + (Math.pow(2, bi) - 1)) * resol
}

/**
 * Return current value in ADLC case
 */
function computeAdlcValue(currentValue, resol, precedingValue, bi) {
  if (currentValue >= Math.pow(2, bi - 1)) {
    return currentValue * resol + precedingValue
  }
  return (currentValue + 1 - Math.pow(2, bi)) * resol + precedingValue
}

/**
 * Uncompress data in case of separate timestamp
 */
function handleSeparateTimestamp(
  out,
  buffer,
  argList,
  last_timestamp,
  flag,
  tagsz
) {
  var tag = {}
  for (var i = 0; i < flag.nb_of_type_measure; i++) {
    tag.lbl = buffer.getNextSample(ST_U8, tagsz)
    var sampleIndex = findIndexFromArgList(argList, tag)
    var compressSampleNb = buffer.getNextSample(ST_U8, 8)
    if (compressSampleNb) {
      var timestampCoding = buffer.getNextSample(ST_U8, 2)
      for (var j = 0; j < compressSampleNb; j++) {
        var precedingRelativeTimestamp =
          out.series[sampleIndex].uncompressSamples[
            out.series[sampleIndex].uncompressSamples.length - 1
          ].data_relative_timestamp
        var currentMeasure = {
          data_relative_timestamp: 0,
          data: {}
        }
        var bi = buffer.getNextBifromHi(timestampCoding)
        currentMeasure.data_relative_timestamp = computeTimestampFromBi(
          buffer,
          precedingRelativeTimestamp,
          bi
        )
        if (currentMeasure.data_relative_timestamp > last_timestamp) {
          last_timestamp = currentMeasure.data_relative_timestamp
        }
        bi = buffer.getNextBifromHi(out.series[sampleIndex].codingTable)
        if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
          var precedingValue =
            out.series[sampleIndex].uncompressSamples[
              out.series[sampleIndex].uncompressSamples.length - 1
            ].data.value
          if (bi > 0) {
            currentMeasure.data.value = completeCurrentMeasure(
              buffer,
              precedingValue,
              out.series[sampleIndex].codingType,
              argList[sampleIndex].resol,
              bi
            )
          } else {
            // bi <= 0
            currentMeasure.data.value = precedingValue
          }
        } else {
          // bi > BR_HUFF_MAX_INDEX_TABLE
          currentMeasure.data.value = buffer.getNextSample(
            argList[sampleIndex].sampletype
          )
        }
        out.series[sampleIndex].uncompressSamples.push(currentMeasure)
      }
    }
  }
  return last_timestamp
}

/**
 * Translate brUncompress output data to expected structure
 */
function adaptToExpectedFormat(out, argList, batchAbsoluteTimestamp) {
  var returnedGlobalObject = {
    //batch_counter: out.batch_counter,
    //batch_relative_timestamp: out.batch_relative_timestamp
  }
  if (batchAbsoluteTimestamp) {
    returnedGlobalObject.b_ts = batchAbsoluteTimestamp
  }
  returnedGlobalObject.datas = out.series.reduce(function(
    acc,
    current,
    index
  ) {
    return acc.concat(
      current.uncompressSamples.map(function(item) {
        var returned = {
          //data_relative_timestamp: item.data_relative_timestamp,
          data: {
            value: argList[index].divide
              ? item.data.value / argList[index].divide
              : item.data.value,

          }
        }
        if (argList[index].lblname) {
          returned.data.label = argList[index].lblname
        }
        if (batchAbsoluteTimestamp) {
          returned.date = computeDataAbsoluteTimestamp(
            batchAbsoluteTimestamp,
            out.batch_relative_timestamp,
            item.data_relative_timestamp
          )
        }
        return returned
      })
    )
  },
  [])
  return returnedGlobalObject
}

/**
 * Compute data absolute timestamp from batch absolute timestamp (bat), batch
 * relative timestamp (brt) and data relative timestamp (drt)
 */
function computeDataAbsoluteTimestamp(bat, brt, drt) {
  return new Date(new Date(bat) - (brt - drt) * 1000).toISOString()
}

try {
  module.exports = brUncompress
} catch (e) {
  // when called from nashorn,  module.exports is unavailable…
}


function UintToInt(Uint, Size) {
  if (Size === 2) {
    if ((Uint & 0x8000) > 0) {
      Uint = Uint - 0x10000;
    }
  }
  if (Size === 3) {
    if ((Uint & 0x800000) > 0) {
      Uint = Uint - 0x1000000;
    }
  }
  if (Size === 4) {
    if ((Uint & 0x80000000) > 0) {
      Uint = Uint - 0x100000000;
    }
  }
  return Uint;
}



function decimalToHex(d, padding) {
  var hex = Number(d).toString(16).toUpperCase();
  padding = typeof (padding) === "undefined" || padding === null ? padding = 2 : padding;

  while (hex.length < padding) {
      hex = "0" + hex;
  }

  return "0x" + hex;
}



function Bytes2Float32(bytes) {

  var sign = (bytes & 0x80000000) ? -1 : 1;
  var exponent = ((bytes >> 23) & 0xFF) - 127;
  var significand = (bytes & ~(-1 << 23));
  if (exponent == 128)
    return sign * ((significand) ? Number.NaN : Number.POSITIVE_INFINITY);

  if (exponent == -127) {
    if (significand == 0) return sign * 0.0;
      exponent = -126;
    significand /= (1 << 22);
  } 
  else significand = (significand | (1 << 23)) / (1 << 23);

  return sign * significand * Math.pow(2, exponent);
}


function Decoder(bytes, port) {

  // Decode an uplink message from a buffer
  // (array) of bytes to an object of fields.
  var decoded = {};

  var decodedBatch = {};

  var lora = {};

  // decoded.lora.port  = port;
    
  // Get raw payload
  var bytes_len_ = bytes.length;
  var temp_hex_str = ""

  lora.payload  = "";




  for( var j = 0; j < bytes_len_; j++ ){
    temp_hex_str   = bytes[j].toString( 16 ).toUpperCase( );
    if( temp_hex_str.length == 1 ){
      temp_hex_str = "0" + temp_hex_str;
    }
    lora.payload += temp_hex_str;
    }

    var date = new Date();
    var lDate = date.toISOString();
    
    if (port === 125){
        //batch
        decodedBatch = !(bytes[0] & 0x01);
    
        //trame standard
        if (decodedBatch === false){

            decoded.zclheader = {};
            decoded.zclheader.report =  "standard";
            attributID = -1;
            cmdID = -1;
            clusterdID = -1;
            //endpoint
            decoded.zclheader.endpoint = ((bytes[0]&0xE0)>>5) | ((bytes[0]&0x06)<<2);
            //command ID
            cmdID =  bytes[1]; decoded.zclheader.cmdID = decimalToHex(cmdID,2);
            //Cluster ID
            clusterdID = bytes[2]*256 + bytes[3]; decoded.zclheader.clusterdID = decimalToHex(clusterdID,4);
            
        
            // decode report and read atrtribut response
            if((cmdID === 0x0a)|(cmdID === 0x8a)|(cmdID === 0x01)){

                stdData = {};
                var tab=[];

                //Attribut ID
                attributID = bytes[4]*256 + bytes[5]; decoded.zclheader.attributID = decimalToHex(attributID,4);

                if (cmdID === 0x8a) {
                    decoded.zclheader.alarm = 1;
                }
                else {
                    decoded.zclheader.alarm = 0;
                }
                    
                //data index start
                if ((cmdID === 0x0a) | (cmdID === 0x8a)) index = 7;
                // if (cmdID === 0x01) {index = 8; decoded.zclheader.status = bytes[6];}


                //binary input counter
                if (  (clusterdID === 0x000f ) & (attributID === 0x0402)) {
                    stdData.label = "Index1";
                    stdData.value = (bytes[index]*256*256*256+bytes[index+1]*256*256+bytes[index+2]*256+bytes[index+3]); 
                    stdData.date = lDate;
                    tab.push(stdData);
                };
            
                // binary input present value
                if (  (clusterdID === 0x000f ) & (attributID === 0x0055)) {
                    // if (decoded.zclheader.endpoint < 3){
                    //   stdData.label = "Index"+(decoded.zclheader.endpoint+1) ;  
                    // }
        
                    // if ((decoded.zclheader.endpoint >= 3)&&(decoded.zclheader.endpoint < 6)){
                    //   stdData.label = "State"+(decoded.zclheader.endpoint-2) ;
                    // }
                    stdData.label = "Index1";
                    stdData.value =bytes[index]; 
                    stdData.date = lDate;
                    tab.push(stdData);
                };


                // lorawan message type
                if (  (clusterdID === 0x8004 ) & (attributID === 0x0000)) {
                    if (bytes[index] === 1)
                        stdData.message_type = "confirmed";
                    if (bytes[index] === 0)
                        stdData.message_type = "unconfirmed";
                }
                    
                // lorawan retry
                if (  (clusterdID === 0x8004 ) & (attributID === 0x0001)) {
                    stdData.nb_retry= bytes[index] ;
                }
                    
                // lorawan reassociation
                if (  (clusterdID === 0x8004 ) & (attributID === 0x0002)) {
                    stdData.period_in_minutes = bytes[index+1] *256+bytes[index+2];
                    stdData.nb_err_frames = bytes[index+3] *256+bytes[index+4];
                }

                // configuration node power desc

                if (   (clusterdID === 0x0050 ) & (attributID === 0x0006)) {
                    index2 = index + 3;
                    if ((bytes[index+2] &0x01) === 0x01) {
                        tab.push({label:"ExternalPowerVoltage" ,value:(bytes[index2]*256+bytes[index2+1])/1000, date:lDate}) ;
                        index2=index2+2;
                    }
                    if ((bytes[index+2] &0x04) === 0x04) {
                        tab.push({label:"BatteryVoltage" ,value:(bytes[index2]*256+bytes[index2+1])/1000, date:lDate}) ;
                        index2=index2+2;
                    }
                    if ((bytes[index+2] &0x02) === 0x02) {decoded.data.rechargeable_battery_voltage = (bytes[index2]*256+bytes[index2+1])/1000;index2=index2+2;}
                    if ((bytes[index+2] &0x08) === 0x08) {decoded.data.solar_harvesting_voltage = (bytes[index2]*256+bytes[index2+1])/1000;index2=index2+2;}
                    if ((bytes[index+2] &0x10) === 0x10) {decoded.data.tic_harvesting_voltage = (bytes[index2]*256+bytes[index2+1])/1000;index2=index2+2;}
                }
                decoded.data = tab;
            }
            
            // decode configuration response
            if(cmdID === 0x07){
                //AttributID
                attributID = bytes[6]*256 + bytes[7];decoded.zclheader.attributID = decimalToHex(attributID,4);
                //status
                decoded.zclheader.status = bytes[4];
                //batch
                decoded.zclheader.decodedBatch = bytes[5];
            }

            //decode read configuration response
            if(cmdID === 0x09){
                //AttributID
                attributID = bytes[6]*256 + bytes[7];decoded.zclheader.attributID = decimalToHex(attributID,4);
                //status
                decoded.zclheader.status = bytes[4];
                //batch
                decoded.zclheader.decodedBatch = bytes[5];
                //AttributType
                decoded.zclheader.attribut_type = bytes[8];
                //min
                decoded.zclheader.min = {}
                if ((bytes[9] & 0x80) === 0x80) {
                    decoded.zclheader.min.value = (bytes[9]-0x80)*256+bytes[10];
                    decoded.zclheader.min.unity = "minutes";
                } 
                else {
                    decoded.zclheader.min.value = bytes[9]*256+bytes[10];
                    decoded.zclheader.min.unity = "seconds";
                }
                //max
                decoded.zclheader.max = {}
                if ((bytes[9] & 0x80) === 0x80) {
                    decoded.zclheader.max.value = (bytes[9]-0x80)*256+bytes[10];
                    decoded.zclheader.max.unity = "minutes";
                } 
                else {
                    decoded.zclheader.max.value = bytes[9]*256+bytes[10];
                    decoded.zclheader.max.unity = "seconds";
                }

            }   
        }

        else{

            var decoded = {};
            brData = (brUncompress(1,[{taglbl: 0,resol: 1, sampletype: 10,lblname: "Index", divide: 1},{ taglbl: 1, resol: 100, sampletype: 6,lblname: "BatteryVoltage", divide: 1000}], lora.payload, lDate))

            var data_length = brData["datas"].length;
            var tab=[];
            for (var i = 0; i < data_length; i++) {               
                tab.push({label:brData["datas"][i]["data"]["label"] ,value:brData["datas"][i]["data"]["value"], date:brData["datas"][i]["date"]}) ;
            }

            decoded.data = tab;

            decoded.zclheader = {};
            decoded.zclheader.report = "batch";
        }

    }
  return decoded;
}


function decodeUplink(input) {
 
  return {
    dataaa : Decoder(input.bytes, input.fPort),
    
    warnings: [],
    errors: []
  };
}

console.log(decodeUplink(parseHexString("110a000f0402230000001e"))) 

Javascript Online Compiler

Write, Run & Share Javascript code online using OneCompiler's JS online compiler for free. It's one of the robust, feature-rich online compilers for Javascript language. Getting started with the OneCompiler's Javascript editor is easy and fast. The editor shows sample boilerplate code when you choose language as Javascript and start coding.

About Javascript

Javascript(JS) is a object-oriented programming language which adhere to ECMA Script Standards. Javascript is required to design the behaviour of the web pages.

Key Features

  • Open-source
  • Just-in-time compiled language
  • Embedded along with HTML and makes web pages alive
  • Originally named as LiveScript.
  • Executable in both browser and server which has Javascript engines like V8(chrome), SpiderMonkey(Firefox) etc.

Syntax help

STDIN Example

var readline = require('readline');
var rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
  terminal: false
});

rl.on('line', function(line){
    console.log("Hello, " + line);
});

variable declaration

KeywordDescriptionScope
varVar is used to declare variables(old way of declaring variables)Function or global scope
letlet is also used to declare variables(new way)Global or block Scope
constconst is used to declare const values. Once the value is assigned, it can not be modifiedGlobal or block Scope

Backtick Strings

Interpolation

let greetings = `Hello ${name}`

Multi line Strings

const msg = `
hello
world!
`

Arrays

An array is a collection of items or values.

Syntax:

let arrayName = [value1, value2,..etc];
// or
let arrayName = new Array("value1","value2",..etc);

Example:

let mobiles = ["iPhone", "Samsung", "Pixel"];

// accessing an array
console.log(mobiles[0]);

// changing an array element
mobiles[3] = "Nokia";

Arrow functions

Arrow Functions helps developers to write code in concise way, it’s introduced in ES6.
Arrow functions can be written in multiple ways. Below are couple of ways to use arrow function but it can be written in many other ways as well.

Syntax:

() => expression

Example:

const numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
const squaresOfEvenNumbers = numbers.filter(ele => ele % 2 == 0)
                                    .map(ele => ele ** 2);
console.log(squaresOfEvenNumbers);

De-structuring

Arrays

let [firstName, lastName] = ['Foo', 'Bar']

Objects

let {firstName, lastName} = {
  firstName: 'Foo',
  lastName: 'Bar'
}

rest(...) operator

 const {
    title,
    firstName,
    lastName,
    ...rest
  } = record;

Spread(...) operator

//Object spread
const post = {
  ...options,
  type: "new"
}
//array spread
const users = [
  ...adminUsers,
  ...normalUsers
]

Functions

function greetings({ name = 'Foo' } = {}) { //Defaulting name to Foo
  console.log(`Hello ${name}!`);
}
 
greet() // Hello Foo
greet({ name: 'Bar' }) // Hi Bar

Loops

1. If:

IF is used to execute a block of code based on a condition.

Syntax

if(condition){
    // code
}

2. If-Else:

Else part is used to execute the block of code when the condition fails.

Syntax

if(condition){
    // code
} else {
    // code
}

3. Switch:

Switch is used to replace nested If-Else statements.

Syntax

switch(condition){
    case 'value1' :
        //code
        [break;]
    case 'value2' :
        //code
        [break;]
    .......
    default :
        //code
        [break;]
}

4. For

For loop is used to iterate a set of statements based on a condition.

for(Initialization; Condition; Increment/decrement){  
//code  
} 

5. While

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while (condition) {  
  // code 
}  

6. Do-While

Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.

do {  
  // code 
} while (condition); 

Classes

ES6 introduced classes along with OOPS concepts in JS. Class is similar to a function which you can think like kind of template which will get called when ever you initialize class.

Syntax:

class className {
  constructor() { ... } //Mandatory Class method
  method1() { ... }
  method2() { ... }
  ...
}

Example:

class Mobile {
  constructor(model) {
    this.name = model;
  }
}

mbl = new Mobile("iPhone");