import {FMnistData} from './fashion-data.js'; var canvas, ctx, saveButton, clearButton; var pos = {x:0, y:0}; var rawImage; var model; function getModel() { // In the space below create a convolutional neural network that can classify the // images of articles of clothing in the Fashion MNIST dataset. Your convolutional // neural network should only use the following layers: conv2d, maxPooling2d, // flatten, and dense. Since the Fashion MNIST has 10 classes, your output layer // should have 10 units and a softmax activation function. You are free to use as // many layers, filters, and neurons as you like. // HINT: Take a look at the MNIST example. model = tf.sequential(); model.add(tf.layers.conv2d({inputShape: [28, 28, 1], kernelSize: 3, filters: 32, activation: 'relu', kernel_initializer: 'he_uniform'})); model.add(tf.layers.conv2d({kernelSize: 3, filters: 32, activation: 'relu', kernel_initializer: 'he_uniform'})); model.add(tf.layers.maxPooling2d({poolSize: [2, 2]})); model.add(tf.layers.flatten()); model.add(tf.layers.dense({units: 64, activation: 'relu'})); model.add(tf.layers.dense({units: 10, activation: 'softmax'})); // YOUR CODE HERE model.compile({optimizer: tf.train.momentum(0.01, 0.9), loss: 'categoricalCrossentropy', metrics: ['accuracy']}); // Compile the model using the categoricalCrossentropy loss, // the tf.train.adam() optimizer, and accuracy for your metrics. // model.compile(// YOUR CODE HERE); return model; } async function train(model, data) { // Set the following metrics for the callback: 'loss', 'val_loss', 'acc', 'val_acc'. const metrics = ['loss', 'val_loss', 'acc', 'val_acc'] // Create the container for the callback. Set the name to 'Model Training' and // use a height of 1000px for the styles. const container = { name: 'Model Training', styles: { height: '1000px' } }; // Use tfvis.show.fitCallbacks() to setup the callbacks. // Use the container and metrics defined above as the parameters. const fitCallbacks = tfvis.show.fitCallbacks(container, metrics) const BATCH_SIZE = 512; const TRAIN_DATA_SIZE = 6000; const TEST_DATA_SIZE = 1000; // Get the training batches and resize them. Remember to put your code // inside a tf.tidy() clause to clean up all the intermediate tensors. // HINT: Take a look at the MNIST example. const [trainXs, trainYs] = tf.tidy(() => { const d = data.nextTrainBatch(TRAIN_DATA_SIZE); return [ d.xs.reshape([TRAIN_DATA_SIZE, 28, 28, 1]), d.labels ]; }); // Get the testing batches and resize them. Remember to put your code // inside a tf.tidy() clause to clean up all the intermediate tensors. // HINT: Take a look at the MNIST example. const [testXs, testYs] = tf.tidy(() => { const d = data.nextTestBatch(TEST_DATA_SIZE); return [ d.xs.reshape([TEST_DATA_SIZE, 28, 28, 1]), d.labels ]; }); return model.fit(trainXs, trainYs, { batchSize: BATCH_SIZE, validationData: [testXs, testYs], epochs: 10, shuffle: true, callbacks: fitCallbacks }); } function setPosition(e){ pos.x = e.clientX-100; pos.y = e.clientY-100; } function draw(e) { if(e.buttons!=1) return; ctx.beginPath(); ctx.lineWidth = 24; ctx.lineCap = 'round'; ctx.strokeStyle = 'white'; ctx.moveTo(pos.x, pos.y); setPosition(e); ctx.lineTo(pos.x, pos.y); ctx.stroke(); rawImage.src = canvas.toDataURL('image/png'); } function erase() { ctx.fillStyle = "black"; ctx.fillRect(0,0,280,280); } function save() { var raw = tf.browser.fromPixels(rawImage,1); var resized = tf.image.resizeBilinear(raw, [28,28]); var tensor = resized.expandDims(0); var prediction = model.predict(tensor); var pIndex = tf.argMax(prediction, 1).dataSync(); var classNames = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]; alert(classNames[pIndex]); } function init() { canvas = document.getElementById('canvas'); rawImage = document.getElementById('canvasimg'); ctx = canvas.getContext("2d"); ctx.fillStyle = "black"; ctx.fillRect(0,0,280,280); canvas.addEventListener("mousemove", draw); canvas.addEventListener("mousedown", setPosition); canvas.addEventListener("mouseenter", setPosition); saveButton = document.getElementById('sb'); saveButton.addEventListener("click", save); clearButton = document.getElementById('cb'); clearButton.addEventListener("click", erase); } async function run() { const data = new FMnistData(); await data.load(); const model = getModel(); console.log(model); tfvis.show.modelSummary({name: 'Model Architecture'}, model); await train(model, data); await model.save('downloads://my_model'); init(); alert("Training is done, try classifying your drawings!"); } document.addEventListener('DOMContentLoaded', run);
Write, Run & Share Javascript code online using OneCompiler's JS online compiler for free. It's one of the robust, feature-rich online compilers for Javascript language. Getting started with the OneCompiler's Javascript editor is easy and fast. The editor shows sample boilerplate code when you choose language as Javascript and start coding.
Javascript(JS) is a object-oriented programming language which adhere to ECMA Script Standards. Javascript is required to design the behaviour of the web pages.
var readline = require('readline');
var rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
terminal: false
});
rl.on('line', function(line){
console.log("Hello, " + line);
});
Keyword | Description | Scope |
---|---|---|
var | Var is used to declare variables(old way of declaring variables) | Function or global scope |
let | let is also used to declare variables(new way) | Global or block Scope |
const | const is used to declare const values. Once the value is assigned, it can not be modified | Global or block Scope |
let greetings = `Hello ${name}`
const msg = `
hello
world!
`
An array is a collection of items or values.
let arrayName = [value1, value2,..etc];
// or
let arrayName = new Array("value1","value2",..etc);
let mobiles = ["iPhone", "Samsung", "Pixel"];
// accessing an array
console.log(mobiles[0]);
// changing an array element
mobiles[3] = "Nokia";
Arrow Functions helps developers to write code in concise way, it’s introduced in ES6.
Arrow functions can be written in multiple ways. Below are couple of ways to use arrow function but it can be written in many other ways as well.
() => expression
const numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
const squaresOfEvenNumbers = numbers.filter(ele => ele % 2 == 0)
.map(ele => ele ** 2);
console.log(squaresOfEvenNumbers);
let [firstName, lastName] = ['Foo', 'Bar']
let {firstName, lastName} = {
firstName: 'Foo',
lastName: 'Bar'
}
const {
title,
firstName,
lastName,
...rest
} = record;
//Object spread
const post = {
...options,
type: "new"
}
//array spread
const users = [
...adminUsers,
...normalUsers
]
function greetings({ name = 'Foo' } = {}) { //Defaulting name to Foo
console.log(`Hello ${name}!`);
}
greet() // Hello Foo
greet({ name: 'Bar' }) // Hi Bar
IF is used to execute a block of code based on a condition.
if(condition){
// code
}
Else part is used to execute the block of code when the condition fails.
if(condition){
// code
} else {
// code
}
Switch is used to replace nested If-Else statements.
switch(condition){
case 'value1' :
//code
[break;]
case 'value2' :
//code
[break;]
.......
default :
//code
[break;]
}
For loop is used to iterate a set of statements based on a condition.
for(Initialization; Condition; Increment/decrement){
//code
}
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while (condition) {
// code
}
Do-while is also used to iterate a set of statements based on a condition. It is mostly used when you need to execute the statements atleast once.
do {
// code
} while (condition);
ES6 introduced classes along with OOPS concepts in JS. Class is similar to a function which you can think like kind of template which will get called when ever you initialize class.
class className {
constructor() { ... } //Mandatory Class method
method1() { ... }
method2() { ... }
...
}
class Mobile {
constructor(model) {
this.name = model;
}
}
mbl = new Mobile("iPhone");