%%%%%%%% GAUSS-SEIDEL METHOD %%%%%%%%%% %%%% HAVE TO CHECK MAX ERROR MANUALLY - CODE WILL PRINT MORE ITERATIONS %%%% % Define the matrix A and vector b A = [8, 0, 6; -1, 12, 0; -7, -0.5, 15]; b = [25; 7; -14]; % Initial guess x0 = [0; 1; 1]; % Maximum allowed component-wise error percentage max_error_percentage = 5; % Initialize variables x = x0; n = length(b); tolerance = max_error_percentage / 100; % Display the header for the iteration table fprintf('Iteration\t x1\t\t x2\t\t x3\t\t Max Error (%%)\n'); fprintf('-----------------------------------------------------------------------\n'); % Iteration counter k = 1; while true % Store the old values of x x_old = x; % Update each component of x for i = 1:n sigma = 0; for j = 1:n if j ~= i sigma = sigma + A(i, j) * x(j); end end x(i) = (b(i) - sigma) / A(i, i); end % Calculate the component-wise error error = abs((x - x_old) ./ x); max_error = max(error) * 100; % Convert to percentage % Print the current iteration, the values of x, and the max error percentage fprintf('%d\t\t %.6f\t %.6f\t %.6f\t %.2f%%\n', k, x(1), x(2), x(3), max_error); % Check if the maximum component-wise error is below the tolerance if max_error < tolerance break; end k = k + 1; end % Summary table fprintf('\nSummary Table:\n'); fprintf('Iteration\t x1\t\t x2\t\t x3\t\t Max Error (%%)\n'); fprintf('-----------------------------------------------------------------------\n'); fprintf('%d\t\t %.6f\t %.6f\t %.6f\t %.2f%%\n', k, x(1), x(2), x(3), max_error);
Write, Run & Share Octave code online using OneCompiler's Octave online compiler for free. It's one of the robust, feature-rich online compilers for Octave language. Getting started with the OneCompiler's Octave editor is easy and fast. The editor shows sample boilerplate code when you choose language as Octave and start coding.