Hslip18
Q1]
import random
def reverse_elements(arr):
reversed_array = {v: k for k, v in arr.items()}
return reversed_array
def traverse_random_order(arr):
random_order = random.sample(arr.items(), len(arr))
return dict(random_order)
def convert_to_variables(arr):
for key, value in arr.items():
globals()[key] = value
def display_with_keys(arr):
for key, value in arr.items():
print(f'{key}: {value}')
Sample associative array
associative_array = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
while True:
print("\nMenu:")
print("1. Reverse the order of each element’s key-value pair.")
print("2. Traverse the element in an array in random order.")
print("3. Convert the array elements into individual variables.")
print("4. Display the elements of an array along with key.")
print("5. Exit")
choice = int(input("Enter your choice (1-5): "))
if choice == 1:
reversed_array = reverse_elements(associative_array)
print("Reversed Array:", reversed_array)
elif choice == 2:
random_order = traverse_random_order(associative_array)
print("Random Order:", random_order)
elif choice == 3:
convert_to_variables(associative_array)
print("Variables Created:", globals())
elif choice == 4:
display_with_keys(associative_array)
elif choice == 5:
print("Exiting the program.")
break
else:
print("Invalid choice. Please enter a number between 1 and 5.")
Q2]
A]
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
Load iris dataset
iris_df = pd.read_csv('iris.csv')
Create box plots
plt.figure(figsize=(12, 8))
plt.subplot(2, 2, 1)
sns.boxplot(x='species', y='sepal_length', data=iris_df)
plt.subplot(2, 2, 2)
sns.boxplot(x='species', y='sepal_width', data=iris_df)
plt.subplot(2, 2, 3)
sns.boxplot(x='species', y='petal_length', data=iris_df)
plt.subplot(2, 2, 4)
sns.boxplot(x='species', y='petal_width', data=iris_df)
plt.show()
B]
import pandas as pd
Load heights and weights dataset
hw_df = pd.read_csv('heights_weights.csv')
Print first 5 rows
print("First 5 Rows:")
print(hw_df.head())
Print last 5 rows
print("\nLast 5 Rows:")
print(hw_df.tail())
Print random 10 rows
print("\nRandom 10 Rows:")
print(hw_df.sample(10))