can_it_move_left(Left):-
Left >= 0,
Left \= 2,
Left \= 5.

can_it_move_right(Right):-
8 >= Right,
Right \= 3,
Right \= 6.

can_it_move_down(Down):-
Down < 9.

can_it_move_up(Up):-
Up > 0.

countInversions(_,[],Inversions):-
	Inversions is 0.

countInversions(Number,[Head|Tail],Inversions):-
	Number>Head,
	Count is 1,
	countInversions(Number,Tail,Aux_inversions),
	Inversions is Count+Aux_inversions.

countInversions(Number,[Head|Tail],Inversions):-
	Number<Head,
	Count is 0,
	countInversions(Number,Tail,Aux_inversions),
	Inversions is Count+Aux_inversions.

%issolvable([1,2,3,4,5,6,8,7],X).
issolvable([],A):-
	A is 0.

issolvable([Head|Tail],Inversions):-
	countInversions(Head,Tail,Aux_inversions),
	issolvable(Tail,Next_inversions),
	Inversions is Next_inversions+Aux_inversions.

iseven(Number):-
	0 is mod(Number,2).

solvepuzzle(Initial_state,Goal_state,Result):-
	flatten(Initial_state, List_initial_state),
	delete(List_initial_state, 0, X),
	issolvable(X,Inversions),
	0 is mod(Inversions,2),
	flatten(Goal_state, List_goal_state),
	delete(List_goal_state, 0, Y),
	issolvable(Y,Inversions_two),
	0 is mod(Inversions_two,2),
	empty_heap(Inital_heap),
	Explored_set = [List_initial_state],
	astar([List_initial_state,0],List_goal_state,Goal_state,Inital_heap,Explored_set,Iterations),
	copy_term(Iterations, Result),
	!.

solvepuzzle(Initial_state,Goal_state,Result):-
	flatten(Initial_state, List_initial_state),
	delete(List_initial_state, 0, X),
	issolvable(X,Inversions),
	\+0 is mod(Inversions,2),
	flatten(Goal_state, List_goal_state),
	delete(List_goal_state, 0, Y),
	issolvable(Y,Inversions_two),
	\+0 is mod(Inversions_two,2),
	empty_heap(Inital_heap),
	Explored_set = [List_initial_state],
	astar([List_initial_state,0],List_goal_state,Goal_state,Inital_heap,Explored_set,Iterations),
	copy_term(Iterations, Result),
	!.

solvepuzzle(_,_,Result):-
	Result = 'No solution'.

create_explored_set(Old_Set,Element,X):-
	Aux = [Element],
	append(Old_Set,Aux,X).

divide_list([Head|_],Head).

%Recieves a list and prints it in a grid manner
%print_element([1,2,3,4,5,6,7,8,0],0).
%123
%456
%780
print_element([],_).

print_element([Head|Tail],I):-
	0 is mod(I,3),
	Newi=I+1,
	nl,
	print(Head),
	print_element(Tail,Newi).

print_element([Head|Tail],I):-
	Newi=I+1,
	print(Head),
	print_element(Tail,Newi).


print_list([],_).

print_list([Head|Tail],I):-
	number(Head),
	print_list(Tail,I).

print_list([Head|Tail],I):-
	Newi=I+1,
	print_list(Tail,Newi),
	print_element(Head,0),
	nl.


create_list_with_new_cost([],_,_,_).

create_list_with_new_cost([Head|Tail],Iterator,Pos_cost,[New_cost|Tail]):-
	Iterator == Pos_cost,
	New_iterator is Iterator+1,
	New_cost is Head + 1,
	create_list_with_new_cost(Tail,New_iterator,Pos_cost,Tail).

create_list_with_new_cost([Head|Tail],Iterator,Pos_cost,[Head|Tail2]):-
	New_iterator is Iterator+1,
	create_list_with_new_cost(Tail,New_iterator,Pos_cost,Tail2).

astar([Head|Tail],Head,_,_,_,Result):-
	append([Head],Tail,Fathers),
	print_list(Fathers,0),
	length(Tail,Aux),
	Result is Aux-1.

astar(State,Goal_state,Grid_goal_state,Priority_queue,Explored_set,Result):-
	divide_list(State,State_to_esplore),
	nth0(Position_blank_tile,State_to_esplore, 0),
	length(State,Pos_cost),
	nth1(Pos_cost, State, Cost),
	New_cost is Cost + 1,
	create_list_with_new_cost(State,1,Pos_cost,New_state),
	findcombinations(New_state,Grid_goal_state,Position_blank_tile,0,Priority_queue,New_cost,Explored_set,New_priority_queue),
	get_from_heap(New_priority_queue, _, P, Next_priority_queue),
	divide_list(P,Explored),
	create_explored_set(Explored_set,Explored,New_explored_set),
	astar(P,Goal_state,Grid_goal_state,Next_priority_queue,New_explored_set,Result).

astar(_,_,_,Priority_queue,_,Result):-
	empty_heap(Priority_queue),
	Result = 'No solution'.


%findcost([1,2,3,4,8,5,7,0,6],[[1,2,3],[4,0,5],[7,8,6]],[[1,2,3],[4,5,6],[7,8,0]],Cost).
%findcost([1,2,3,4,5,0,7,8,6],[[1,2,3],[4,5,6],[7,8,0]],[[1,2,3],[4,5,6],[7,8,0]],Cost).
findcost([],_,_,Nextcost):-
	Nextcost is 0.

findcost([Head|Tail],Matrixinitialstate ,Matrixgoalstate, Cost):-
	Head == 0,
	findcost(Tail,Matrixinitialstate ,Matrixgoalstate, Nextcost),
	Cost is 0 + Nextcost.

findcost([Head|Tail], Matrixinitialstate ,Matrixgoalstate, Cost):-
	matrix(Matrixgoalstate,K,L,Head),
	matrix(Matrixinitialstate,I,J,Head),
	Manhattan_distance is abs(I-K) + abs(J-L),
	findcost(Tail,Matrixinitialstate,Matrixgoalstate,Nextcost),
	Cost is Manhattan_distance + Nextcost.


convert_to_matrix(Lista,Nueva_lista):-
	aux_convert_to_matrix(Lista,1,N1,T1),
	aux_convert_to_matrix(T1,1,N2,T2),
	aux_convert_to_matrix(T2,1,N3,_),
	append([N1],[N2],Aux),
	append(Aux,[N3],Nueva_lista),
	!.

aux_convert_to_matrix([Head|Tail], Iterator, [Head|Tail2], Sobra):-
	Iterator < 3,
	Nuevoi is Iterator+1,
	aux_convert_to_matrix(Tail,Nuevoi,Tail2, Sobra).


aux_convert_to_matrix([Head|Tail], Iterator, [Head], Tail):-
	0 is mod(Iterator,3).


%create_list_of_lists([1,2,3,4],[5,6,7,8],X).
%result X = [[1,2,3,4],[5,6,7,8]].
create_list_of_explored_states(List,Element,New_list):-
	Aux = [Element],
	append(Aux,List,New_list).

%Finding all the posible combinations where a tile can be moved. 
%The 4th value represent a move 0=left,1=right,2=down,3=up.
%findcombinations([[1,2,3,4,0,5,6,7,8],1],[[3,2,1],[0,5,4],[6,7,8]],4,0,Old_priority_queue,New_priority_queue)
findcombinations(State,Matrix_goal_state,Position_blank_tile,0,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	divide_list(State,State_to_esplore),
	Left is Position_blank_tile - 1,
	can_it_move_left(Left),
	swap_tiles(State_to_esplore, Position_blank_tile, Left, Permutation_left),
	\+member(Permutation_left,Explored_set),
	convert_to_matrix(Permutation_left,Matrix_per_left),
	findcost(Permutation_left,Matrix_per_left,Matrix_goal_state,Cost),
	create_list_of_explored_states(State,Permutation_left,State_with_fathers),
	New_cost is Cost_move_grid + Cost,
	add_to_heap(Old_priority_queue,New_cost,State_with_fathers,Aux_priority_queue),
	findcombinations(State,Matrix_goal_state,Position_blank_tile,1,Aux_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(State,Matrix_goal_state,Position_blank_tile,0,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	findcombinations(State,Matrix_goal_state,Position_blank_tile,1,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(State,Matrix_goal_state,Position_blank_tile,1,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	divide_list(State,State_to_esplore),
	Right is Position_blank_tile + 1,
	can_it_move_right(Right),
	swap_tiles(State_to_esplore, Position_blank_tile, Right, Permutation_right),
	\+member(Permutation_right,Explored_set),
	convert_to_matrix(Permutation_right,Matrix_per_right),
	findcost(Permutation_right,Matrix_per_right,Matrix_goal_state,Cost),
	create_list_of_explored_states(State,Permutation_right,State_with_fathers),
	New_cost is Cost_move_grid + Cost,
	add_to_heap(Old_priority_queue,New_cost,State_with_fathers,Aux_priority_queue),
	findcombinations(State,Matrix_goal_state,Position_blank_tile,2,Aux_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(State,Matrix_goal_state,Position_blank_tile,1,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	findcombinations(State,Matrix_goal_state,Position_blank_tile,2,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).


findcombinations(State,Matrix_goal_state,Position_blank_tile,2,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	divide_list(State,State_to_esplore),
	Down is Position_blank_tile + 3,
	can_it_move_down(Down),
	swap_tiles(State_to_esplore, Position_blank_tile, Down, Permutation_down),
	\+member(Permutation_down,Explored_set),
	convert_to_matrix(Permutation_down,Matrix_per_down),
	findcost(Permutation_down,Matrix_per_down,Matrix_goal_state,Cost),
	create_list_of_explored_states(State,Permutation_down,State_with_fathers),
	New_cost is Cost_move_grid + Cost,
	add_to_heap(Old_priority_queue,New_cost,State_with_fathers,Aux_priority_queue),
	findcombinations(State,Matrix_goal_state,Position_blank_tile,3,Aux_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(State,Matrix_goal_state,Position_blank_tile,2,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	findcombinations(State,Matrix_goal_state,Position_blank_tile,3,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).


findcombinations(State,Matrix_goal_state,Position_blank_tile,3,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	divide_list(State,State_to_esplore),
	Up is Position_blank_tile -3,
	can_it_move_up(Up),
	swap_tiles(State_to_esplore, Position_blank_tile, Up, Permutation_up),
	\+member(Permutation_up,Explored_set),
	convert_to_matrix(Permutation_up,Matrix_per_up),
	findcost(Permutation_up,Matrix_per_up,Matrix_goal_state,Cost),
	create_list_of_explored_states(State,Permutation_up,State_with_fathers),
	New_cost is Cost_move_grid + Cost,
	add_to_heap(Old_priority_queue,New_cost,State_with_fathers,Aux_priority_queue),
	findcombinations(State,Matrix_goal_state,Position_blank_tile,4,Aux_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(State,Matrix_goal_state,Position_blank_tile,3,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue):-
	findcombinations(State,Matrix_goal_state,Position_blank_tile,4,Old_priority_queue,Cost_move_grid,Explored_set,New_priority_queue).

findcombinations(_,_,_,4,Old_priority_queue,_,_,New_priority_queue):-
	copy_term(Old_priority_queue,New_priority_queue).

matrix(M, X, Y, Element) :-
    nth0(X, M, R),
    nth0(Y, R, Element).

swap_tiles(List,Zero,Move,Nl):-
	Ayuda is Move+1,
	Zero==Ayuda,
	nth0(Move,List, Number_to_find),
	aux_swap_tiles(List,Move,0,New_list,_,List_to_explore_more),
	append(New_list,[0],Nl_aux),
	append(Nl_aux,[Number_to_find],Nl_aux2),
	delete(List_to_explore_more, 0, X),
	append(Nl_aux2,X,Nl),
	!.

swap_tiles(List,Zero,Move,Nl):-
	Ayuda is Move-1,
	Zero==Ayuda,
	nth0(Move,List,Number_to_find),
	aux_swap_tiles(List,Zero,0,New_list,_,List_to_explore_more),
	append(New_list,[Number_to_find],Nl_aux),
	append(Nl_aux,[0],Nl_aux2),
	delete(List_to_explore_more, Number_to_find, X),
	append(Nl_aux2,X,Nl),
	!.

swap_tiles(List,Zero,Move,Nl):-
	Ayuda is Move+1,
	Ayuda_dos is Move-1,
	Zero<Move,
	\+Zero==Ayuda,
	\+Zero==Ayuda_dos,
	nth0(Move,List, Number_to_find),
	aux_swap_tiles(List,Zero,0,New_list,Current_iterator,List_to_explore_more),
	append(New_list,[Number_to_find],Nl_aux),
	aux_swap_tiles(List_to_explore_more,Move,Current_iterator+1,New_list_two,_,List_to_explore_more_two),
	append(Nl_aux,New_list_two,Nl_aux_two),
	append(Nl_aux_two,[0],Nl_aux_three),
	append(Nl_aux_three,List_to_explore_more_two,Nl),
	!.

swap_tiles(List,Zero,Move,Nl):-
	Ayuda is Move+1,
	Ayuda_dos is Move-1,
	Zero>Move,
	\+Zero==Ayuda,
	\+Zero==Ayuda_dos,
	nth0(Move,List, Number_to_find),
	aux_swap_tiles(List,Move,0,New_list,Current_iterator,List_to_explore_more),
	append(New_list,[0],Nl_aux),
	aux_swap_tiles(List_to_explore_more,Zero,Current_iterator+1,New_list_two,_,List_to_explore_more_two),
	append(Nl_aux,New_list_two,Nl_aux_two),
	append(Nl_aux_two,[Number_to_find],Nl_aux_three),
	append(Nl_aux_three,List_to_explore_more_two,Nl),
	!.


aux_swap_tiles([_|Tail],Limit,Iterator,[],X,Tail):-
	Iterator==Limit,
	copy_term(Iterator,X).

aux_swap_tiles([Head|Tail],Limit,Iterator,[Head|Tail2],X,List_to_explore_more):-
	Iterator<Limit,
	New_iterator is Iterator+1,
	aux_swap_tiles(Tail,Limit,New_iterator,Tail2,X,List_to_explore_more).


%Test cases
%Test cases where you can find the answer in this the pdf.
%solvepuzzle([[1,3,4],[8,0,5],[7,2,6]], [[1,2,3],[8,0,4],[7,6,5]],Cost).
%Cost = 6
%solvepuzzle([[2,3,1],[7,0,8],[6,5,4]], [[1,2,3],[8,0,4],[7,6,5]],Cost).
%Cost = 14
%solvepuzzle([[1,3,4],[8,6,2],[0,7,5]], [[1,2,3],[8,0,4],[7,6,5]],Cost).
%Cost = 6
%solvepuzzle([[3,6,4],[0,1,2],[8,7,5]], [[1,2,3],[8,0,4],[7,6,5]],Cost).
%Cost = 11
%solvepuzzle([[2,8,3],[1,0,4],[7,6,5]], [[1,2,3],[8,0,4],[7,6,5]],Cost).
%Cost = 4
%solvepuzzle([[1,2,3],[4,0,5],[7,8,6]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 2
%solvepuzzle([[6,0,7],[5,8,1],[2,3,4]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 27
%solvepuzzle([[3,1,7],[5,4,8],[6,2,0]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 28

%Not solvable
%solvepuzzle([[1,2,3],[4,0,5],[7,8,6]], [[1,2,3],[4,5,6],[8,7,0]],Cost).
%Result = 'No solution'.
%solvepuzzle([[8,1,2],[0,4,3],[7,6,5]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Result = 'No solution'.
%solvepuzzle([[0,1,3],[4,2,5],[7,8,6]], [[1,2,3],[4,5,6],[8,7,0]],Cost).
%Result = 'No solution'.

%Test case where the inital state and the goal test are the same
%solvepuzzle([[1,2,3],[4,5,6],[7,8,0]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 0
%solvepuzzle([[1,2,3],[7,8,0],[4,5,6]], [[1,2,3],[7,8,0],[4,5,6]],Cost).
%Cost = 0

%Some test cases where it takes 29 moves to reach the goal state. They take like 25 seconds
%solvepuzzle([[6,0,3],[8,5,4],[7,2,1]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 29.
%solvepuzzle([[6,0,3],[8,5,7],[4,1,2]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 29.
%solvepuzzle([[2,0,1],[3,8,4],[6,5,7]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 29.
%solvepuzzle([[1,0,4],[6,8,7],[2,3,5]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 29.

%Some test cases where it takes 30 moves to reach the goal state. They take like 25 seconds
%solvepuzzle([[0,5,1],[2,6,4],[3,8,7]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 30.
%solvepuzzle([[0,5,1],[6,8,4],[3,2,7]], [[1,2,3],[4,5,6],[7,8,0]],Cost). 
%Cost = 30.

%The last two test cases take like 25 seconds each. They are the hardest puzzles
%solvepuzzle([[8,6,7],[2,5,4],[3,0,1]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 31
%solvepuzzle([[6,4,7],[8,5,0],[3,2,1]], [[1,2,3],[4,5,6],[7,8,0]],Cost).
%Cost = 31 

Prolog online compiler

Write, Run & Share Prolog code online using OneCompiler’s Prolog online compiler for free. It’s a simple and intuitive platform to experiment with logic programming in Prolog. OneCompiler supports standard Prolog syntax, great for learning, prototyping, and practicing logic-based problems.

About Prolog

Prolog (Programming in Logic) is a logic programming language associated with artificial intelligence and computational linguistics. It works through facts, rules, and queries, using a form of symbolic reasoning known as backward chaining. Prolog is declarative, meaning you describe what you want instead of how to compute it.

Sample Code

The following is a simple Prolog program that prints a greeting:

:- initialization(main).

main :-
    write('Hello, World!').

Syntax Basics

Facts

Facts represent basic assertions about the world.

likes(alice, pizza).
likes(bob, pasta).

Rules

Rules define logical relationships using facts.

friends(X, Y) :- likes(X, Z), likes(Y, Z).

Queries

Queries are used to find information based on facts and rules.

?- likes(alice, What).

Operators

OperatorDescription
:-Rule definition
,Logical AND
;Logical OR
=Unification

Lists

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

Recursion

Prolog heavily relies on recursion.

factorial(0, 1).
factorial(N, F) :-
  N > 0,
  N1 is N - 1,
  factorial(N1, F1),
  F is N * F1.

This guide provides a quick reference to Prolog programming syntax and features. Start writing Prolog code using OneCompiler’s Prolog online compiler today!