def pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1.0e-6, nstart=None, weight='weight', dangling=None): """Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. Parameters ---------- G : graph A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. alpha : float, optional Damping parameter for PageRank, default=0.85. personalization: dict, optional The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. max_iter : integer, optional Maximum number of iterations in power method eigenvalue solver. tol : float, optional Error tolerance used to check convergence in power method solver. nstart : dictionary, optional Starting value of PageRank iteration for each node. weight : key, optional Edge data key to use as weight. If None weights are set to 1. dangling: dict, optional The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns ------- pagerank : dictionary Dictionary of nodes with PageRank as value Notes ----- The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges. """ if len(G) == 0: return {} if not G.is_directed(): D = G.to_directed() else: D = G # Create a copy in (right) stochastic form W = nx.stochastic_graph(D, weight=weight) N = W.number_of_nodes() # Choose fixed starting vector if not given if nstart is None: x = dict.fromkeys(W, 1.0 / N) else: # Normalized nstart vector s = float(sum(nstart.values())) x = dict((k, v / s) for k, v in nstart.items()) if personalization is None: # Assign uniform personalization vector if not given p = dict.fromkeys(W, 1.0 / N) else: missing = set(G) - set(personalization) if missing: raise NetworkXError('Personalization dictionary ' 'must have a value for every node. ' 'Missing nodes %s' % missing) s = float(sum(personalization.values())) p = dict((k, v / s) for k, v in personalization.items()) if dangling is None: # Use personalization vector if dangling vector not specified dangling_weights = p else: missing = set(G) - set(dangling) if missing: raise NetworkXError('Dangling node dictionary ' 'must have a value for every node. ' 'Missing nodes %s' % missing) s = float(sum(dangling.values())) dangling_weights = dict((k, v/s) for k, v in dangling.items()) dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0] # power iteration: make up to max_iter iterations for _ in range(max_iter): xlast = x x = dict.fromkeys(xlast.keys(), 0) danglesum = alpha * sum(xlast[n] for n in dangling_nodes) for n in x: # this matrix multiply looks odd because it is # doing a left multiply x^T=xlast^T*W for nbr in W[n]: x[nbr] += alpha * xlast[n] * W[n][nbr][weight] x[n] += danglesum * dangling_weights[n] + (1.0 - alpha) * p[n] # check convergence, l1 norm err = sum([abs(x[n] - xlast[n]) for n in x]) if err < N*tol: return x raise NetworkXError('pagerank: power iteration failed to converge ' 'in %d iterations.' % max_iter)
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |