from vb2py.vbfunctions import *
from vb2py.vbdebug import *

"""

   CCYL1.bas : Nonlinear Concentric Cylinders : 1/2 Hybrid Scheme


 Determine RLR Given Target Radial Cauchy Stress


 Print Soution At Time Tau; Capture Shock Front Info
"""

CapG91# = Variant()
CapG92# = Variant()
CapG93# = Variant()
Cour# = Variant()
DRBar1# = Variant()
DRBar2# = Variant()
DRBar3# = Variant()
DTau# = Variant()
Speed1 = Variant()
jMax1% = Variant()
jMax2% = Variant()
jMax3% = Variant()
iLoop% = Variant()
iPrint% = Variant()
Beta21# = Variant()
Phi21# = Variant()
Bata31# = Variant()
Phi31# = Variant()
RA# = Variant()
RB# = Variant()
RC# = Variant()
RLR# = Variant()
RLT# = Variant()
Tau# = Variant()
TauMax# = Variant()
TPrint# = Variant()
U1# = vbObjectInitialize((3, 2798,), Variant)
UP1# = vbObjectInitialize((3, 2798,), Variant)
U2# = vbObjectInitialize((3, 2134,), Variant)
UP2# = vbObjectInitialize((3, 2134,), Variant)
U3# = vbObjectInitialize((3, 16543,), Variant)
UP3# = vbObjectInitialize((3, 16543,), Variant)

def CCyl1():
    Pois1# = Variant()

    Pois2# = Variant()

    Pois3# = Variant()

    Beta21# = Variant()

    Beta31# = Variant()

    SigRA# = Variant()

    SigRD# = Variant()

    Speed1# = Variant()

    UOld11# = Variant()

    Eigen1# = Variant()

    Eigen2# = Variant()

    Eigen3# = Variant()

    EigMx1# = Variant()

    EigMx2# = Variant()

    EigMx3# = Variant()

    RLTSq# = Variant()

    EigSq# = Variant()

    DTau1# = Variant()

    DTau2# = Variant()

    DTau3# = Variant()

    D1# = Variant()

    D2# = Variant()

    D3# = Variant()

    PartA# = Variant()

    PartB# = Variant()

    Hold1# = Variant()

    Hold2# = Variant()

    Hold3# = Variant()

    VAvg# = Variant()

    DLmdaT# = Variant()

    RBar# = Variant()

    RCauch# = Variant()

    j% = Variant()

    k% = Variant()
    #  ---------------------------------------------------------------------
    #   Converted from CCYL1.FOR (in P:\Archive\PHD1988\CCyl1993\CCYL1&2)
    #   Concentric Cylinders In An Unbounded Medium
    #     RA=1             RB=1.5
    #     1 -------------- jMax1              RC=2                       RD
    #                        1 -------------- jMax2                  INFINITE
    #                                           1 --------------------- jMax3
    #                                                     PT Janele  14-10-04
    #   ---------------------------------------------------------------------
    #COMMON /COM1/ CapG91, CapG92, CapG93
    #COMMON /COM2/ Cour, DRBAR1, DRBAR2, DRBAR3, DTAU, SPEED1
    #COMMON /COM3/ jMax1, jMax2, jMax3, ILOOP, IPRINT
    #COMMON /COM4/ BETA21, PHI21, BETA31, PHI31
    #COMMON /COM5/ RA, RB, RC, RLR, RLT
    #COMMON /COM6/ TAU, TAUMAX, TPRINT
    #COMMON /COM7/ U1(3,2798), UP1(3,2798)
    #COMMON /COM8/ U2(3,2134), UP2(3,2134)
    #COMMON /COM9/ U3(3,16543), UP3(3,16543)
    #...  OPEN OUTPUT DATA FILES
    #OPEN (UNIT=2, FILE='CCYL1-2.DAT', STATUS='UNKNOWN')
    #OPEN (UNIT=3, FILE='CCYL1-3.DAT', STATUS='UNKNOWN')
    #OPEN (UNIT=4, FILE='CCYL1-4.DAT', STATUS='UNKNOWN')
    #OPEN (UNIT=7, FILE='CCYL1-7.DAT', STATUS='UNKNOWN')
    #OPEN (UNIT=8, FILE='CCYL1-8.DAT', STATUS='UNKNOWN')
    #OPEN (UNIT=9, FILE='CCYL1-9.DAT', STATUS='UNKNOWN')
    VBFiles.openFile(2, 'CCyl1-2Out.dat', 'w') 
    VBFiles.openFile(3, 'CCyl1-3Out.dat', 'w') 
    VBFiles.openFile(4, 'CCyl1-4Out.dat', 'w') 
    VBFiles.openFile(7, 'CCyl1-7Out.dat', 'w') 
    VBFiles.openFile(8, 'CCyl1-8Out.dat', 'w') 
    VBFiles.openFile(9, 'CCyl1-9Out.dat', 'a') 
    #...  Define Data For Dimensionless Formulation
    Cour = 0.999
    DRBar3 = 0.0002
    iPrint = 0
    Pois1 = 0.3
    Pois2 = 0.4
    Pois3 = 0.35
    Beta21 = 1.2
    Phi21 = 1.2
    Beta31 = 1.1
    Phi31 = 1.1
    RA = 1
    RB = 1.5
    RC = 2
    SigRA = - 1
    SigRD = 0
    #...  Initialize The Constants CapG91#, CapG92#, CapG93#
    CapG91 = 2 *  ( 1 + Pois1 )  /  ( 3 *  ( 1 - 2 * Pois1 ) )  / 9
    CapG92 = 2 *  ( 1 + Pois2 )  /  ( 3 *  ( 1 - 2 * Pois2 ) )  / 9
    CapG93 = 2 *  ( 1 + Pois3 )  /  ( 3 *  ( 1 - 2 * Pois3 ) )  / 9
    #...  Initialize Time Parameters
    Tau = 0
    Speed1 = Sqr(( 1 / 3 )  + 1 + CapG91 * 9)
    TPrint = 0.125
    TauMax = 0.75
    #...  Define Initial Eigenvalues
    Eigen1 = Sqr(( 1 / 3 )  + 1 + CapG91 * 9)
    Eigen2 = Sqr(( Phi21 / Beta21 )  *  ( ( 1 / 3 )  + 1 + CapG92 * 9 ))
    Eigen3 = Sqr(( Phi31 / Beta31 )  *  ( ( 1 / 3 )  + 1 + CapG93 * 9 ))
    Debug.Print(Eigen1, Eigen2, Eigen3)
    # WRITE(6,100) Eigen1#, Eigen2#, Eigen3#
    # 100    FORMAT(' ','INITIAL : Eigen1# Eigen2# Eigen3# = ',3(1X,F16.6))
    #...  Define DRBar1#, jMax1% AND jMax2% : (Material #1)
    DRBar1 = DRBar3 *  ( Eigen1 / Eigen3 )
    DRBar2 = DRBar3 *  ( Eigen2 / Eigen3 )
    jMax1 = ( RB - RA )  / DRBar1 + 1.05
    jMax2 = ( RC - RB )  / DRBar2 + 1.05
    jMax3 = 16543
    Debug.Print(jMax1, jMax2, jMax3)
    # WRITE(6,120) jMax1%, jMax2%, jMax3%
    # 120    FORMAT(' ','jMax1%  jMax2% jMax3%  =  ',3I9)
    #...  Modify DRBar1#, DRBar2# So That(jMax1%-1)*DRBar = (RB#-RA#) ...
    DRBar1 = ( RB - RA )  /  ( jMax1 - 1 )
    DRBar2 = ( RC - RB )  /  ( jMax2 - 1 )
    Debug.Print(DRBar1, DRBar2, DRBar3)
    # WRITE(6,150) DRBar1#, DRBar2#, DRBar3#
    # 150    FORMAT(' ','DRBar1# DRBar2# DRBar3# =  ',3(1X,F16.6),//)
    #...  Define Initial Time Step Size : Use 10. As "Safety" Factor
    DTau1 = Cour * DRBar1 / Eigen1
    DTau2 = Cour * DRBar2 / Eigen2
    DTau3 = Cour * DRBar3 / Eigen3
    DTau = Application.WorksheetFunction.Min(DTau1, DTau2, DTau3) / 10
    #...  Material Is Initially In An Unstressed State
    for j% in vbForRange(1, jMax1):
        U1[1, j] = 0
        U1[2, j] = 1
        U1[3, j] = 1
    for j% in vbForRange(1, jMax2):
        U2[1, j] = 0
        U2[2, j] = 1
        U2[3, j] = 1
    for j% in vbForRange(1, jMax3):
        U3[1, j] = 0
        U3[2, j] = 1
        U3[3, j] = 1
    #  ======================================================================
    #...  Top Of Outer Time Step Loop : Do 800 Loop Here
    for iLoop% in vbForRange(2, 30000):
        #...  Loop On Outer Surrounding Material Dependent On Wave Front; iloop%
        jMax3 = iLoop + 2
        if ( jMax3 > 16543 ) :
            break
        Tau = Tau + DTau
        if ( Tau > TauMax ) :
            break
        Debug.Print(iLoop, Tau, jMax3)
        #...  Find New Lamda-R At Inside Boundary
        RLT = U1(3, 1)
        Call(FndRLR(SigRA, CapG91, 1))
        U1[2, 1] = RLR
        #...  Search For Largest Eigenvalue And Define Time Step
        EigMx1 = 0
        for j% in vbForRange(1, jMax1):
            RLR = U1(2, j)
            RLT = U1(3, j)
            RLTSq = RLT * RLT
            EigSq = 1 +  ( RLTSq *  ( RLR * RLT )  **  ( - 4 / 3 ) )  / 3
            EigSq = EigSq + CapG91 *  ( 10 * RLR **  ( - 11 )  * RLT **  ( - 9 )  - RLR **  ( - 2 ) )
            if ( EigSq >= EigMx1 ) :
                EigMx1 = EigSq
        EigMx2 = 0
        for j% in vbForRange(1, jMax2):
            RLR = U2(2, j)
            RLT = U2(3, j)
            RLTSq = RLT * RLT
            EigSq = 1 +  ( RLTSq *  ( RLR * RLT )  **  ( - 4 / 3 ) )  / 3
            EigSq = EigSq + CapG92 *  ( 10 * RLR **  ( - 11 )  * RLT **  ( - 9 )  - RLR **  ( - 2 ) )
            EigSq = ( Phi21 / Beta21 )  * EigSq
            if ( EigSq >= EigMx2 ) :
                EigMx2 = EigSq
        EigMx3 = 0
        for j% in vbForRange(1, jMax3):
            RLR = U3(2, j)
            RLT = U3(3, j)
            RLTSq = RLT * RLT
            EigSq = 1 +  ( RLTSq *  ( RLR * RLT )  **  ( - 4 / 3 ) )  / 3
            EigSq = EigSq + CapG93 *  ( 10 * RLR **  ( - 11 )  * RLT **  ( - 9 )  - RLR **  ( - 2 ) )
            EigSq = ( Phi31 / Beta31 )  * EigSq
            if ( EigSq >= EigMx3 ) :
                EigMx3 = EigSq
        DTau1 = Cour * DRBar1 / Sqr(EigMx1)
        DTau2 = Cour * DRBar2 / Sqr(EigMx2)
        DTau3 = Cour * DRBar3 / Sqr(EigMx3)
        DTau = Application.WorksheetFunction.Min(DTau1, DTau2, DTau3)
        D1 = DTau / DRBar1
        D2 = DTau / DRBar2
        D3 = DTau / DRBar3
        #  ---------------------  Mac Cormack Predictor  ------------------------
        #...  Special Case At j% = 1 : Material #1
        RBar = RA
        RLR = U1(2, 2)
        RLT = U1(3, 2)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = PartA + CapG91 * PartB
        RLR = U1(2, 1)
        RLT = U1(3, 1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = PartA + CapG91 * PartB
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( PartA + CapG91 * PartB )  / RBar
        UP1[1, 1] = U1(1, 1) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3
        VAvg = 0.5 *  ( U1(1, 1) + UP1(1, 1) )
        DLmdaT = VAvg * DTau / RBar
        UP1[3, 1] = U1(3, 1) + DLmdaT
        RLT = UP1(3, 1)
        Call(FndRLR(SigRA, CapG91, 1))
        UP1[2, 1] = RLR
        #...  Predictor Step For 2 < j% < jMax1%-1 : Material #1
        for j% in vbForRange(2, jMax1 - 1):
            RBar = RA +  ( j - 1 )  * DRBar1
            RLR = U1(2, j + 1)
            RLT = U1(3, j + 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = PartA + CapG91 * PartB
            RLR = U1(2, j)
            RLT = U1(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = PartA + CapG91 * PartB
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( PartA + CapG91 * PartB )  / RBar
            UP1[1, j] = U1(1, j) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3
            UP1[2, j] = U1(2, j) + D1 *  ( U1(1, j + 1) - U1(1, j) )
            UP1[3, j] = U1(3, j) + DTau * U1(1, j) / RBar
        #...  Predictor : Special Case At j% = jMax1% : Material #1
        # Forward Diff Scheme; Need Values In Material #2 At Grid Node 2
        # Find Cauchy Radial Stress In Material #2; Grid Node 2
        RLR = U2(2, 2)
        RLT = U2(3, 2)
        RCauch = RLR - RLT *  ( RLR * RLT )  **  ( - 1 / 3 )
        RCauch = RCauch + CapG92 *  ( 1 / RLR - RLR **  ( - 10 )  * RLT **  ( - 9 ) )
        RCauch = Phi21 *  ( RCauch / RLT )
        # Find Psuedo Rlr# Which Would Be In Material #1 And At Above Grid Node
        # Retain Psuedo Rlt# In Material #1 = Actual Rlt# In Material #2
        #Note That Resultant Rlr# Is Returned In Common Block
        Call(FndRLR(RCauch, CapG91, 1))
        # continue With Foreward Difference Scheme; Required RLr# Was Returned
        RBar = RB
        RLT = U2(3, 2)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = PartA + CapG91 * PartB
        RLR = U1(2, jMax1)
        RLT = U1(3, jMax1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = PartA + CapG91 * PartB
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( PartA + CapG92 * PartB )  / RBar
        UP1[1, jMax1] = U1(1, jMax1) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3
        UP1[2, jMax1] = U1(2, jMax1) + D1 *  ( U2(1, 2) - U1(1, jMax1) )
        UP1[3, jMax1] = U1(3, jMax1) + DTau * U1(1, jMax1) / RBar
        #...  PREDICTOR STEP FOR 1 < j% < jMax2%-1 : MATERIAL #2
        for j% in vbForRange(1, jMax2 - 1):
            RBar = RB +  ( j - 1 )  * DRBar2
            RLR = U2(2, j + 1)
            RLT = U2(3, j + 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
            RLR = U2(2, j)
            RLT = U2(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )  / RBar
            UP2[1, j] = U2(1, j) - D2 *  ( Hold1 - Hold2 )  - DTau * Hold3
            UP2[2, j] = U2(2, j) + D2 *  ( U2(1, j + 1) - U2(1, j) )
            UP2[3, j] = U2(3, j) + DTau * U2(1, j) / RBar
        #...  Predictor : Special Case At j% = jMax2% : Material #2
        # Forward Diff Scheme; Need Values In Material #3 At Grid Node 2
        # Find Cauchy Ra#Dial Stress In Material #3; Grid Node 2
        RLR = U3(2, 2)
        RLT = U3(3, 2)
        RCauch = RLR - RLT *  ( RLR * RLT )  **  ( - 1 / 3 )
        RCauch = RCauch + CapG93 *  ( 1 / RLR - RLR **  ( - 10 )  * RLT **  ( - 9 ) )
        RCauch = Phi31 *  ( RCauch / RLT )
        # Find Psuedo Rlr# Which Would Be In Material #2 And At Above Grid Node
        # Retain Psuedo Rlt# In Material #1 = Actual Rlt# In Material #2
        # Note That Resultant Rlr# Is Returned In Common Block
        Call(FndRLR(RCauch, CapG92, Phi21))
        # Continue With Foreward Difference Scheme; Required RLr# Was Returned
        RBar = RC
        RLT = U3(3, 2)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
        RLR = U2(2, jMax2)
        RLT = U2(3, jMax2)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )  / RBar
        UP2[1, jMax2] = U2(1, jMax2) - D2 *  ( Hold1 - Hold2 )  - DTau * Hold3
        UP2[2, jMax2] = U2(2, jMax2) + D2 *  ( U3(1, 2) - U2(1, jMax2) )
        UP2[3, jMax2] = U2(3, jMax2) + DTau * U2(1, jMax2) / RBar
        #...  Continuation Of Predictor Step For 1 < j% < jMax3%-1 : Material #3
        for j% in vbForRange(1, jMax3 - 1):
            RBar = RC +  ( j - 1 )  * DRBar3
            RLR = U3(2, j + 1)
            RLT = U3(3, j + 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
            RLR = U3(2, j)
            RLT = U3(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )  / RBar
            UP3[1, j] = U3(1, j) - D3 *  ( Hold1 - Hold2 )  - DTau * Hold3
            UP3[2, j] = U3(2, j) + D3 *  ( U3(1, j + 1) - U3(1, j) )
            UP3[3, j] = U3(3, j) + DTau * U3(1, j) / RBar
        #  ---------------------  MACORMACK CORRECTOR  ------------------------
        #...  Corrector : Special Case At J% = 1 : Material #1
        #...  Use Foreward Difference Here
        RBar = RA
        RLR = UP1(2, 2)
        RLT = UP1(3, 2)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = PartA + CapG91 * PartB
        RLR = UP1(2, 1)
        RLT = UP1(3, 1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = PartA + CapG91 * PartB
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( PartA + CapG91 * PartB )  / RBar
        UOld11 = U1(1, 1)
        U1[1, 1] = 0.5 *  ( UP1(1, 1) + U1(1, 1) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
        VAvg = 0.5 *  ( U1(1, 1) + UOld11 )
        DLmdaT = VAvg * DTau / RBar
        U1[3, 1] = U1(3, 1) + DLmdaT
        RLT = U1(3, 1)
        Call(FndRLR(SigRA, CapG91, 1))
        U1[2, 1] = RLR
        #...  Corrector Step For 2 < j% < jMax1% : Material #1
        for j% in vbForRange(2, jMax1):
            RBar = RA +  ( j - 1 )  * DRBar1
            RLR = UP1(2, j)
            RLT = UP1(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = PartA + CapG91 * PartB
            RLR = UP1(2, j - 1)
            RLT = UP1(3, j - 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = PartA + CapG91 * PartB
            RLR = UP1(2, j)
            RLT = UP1(3, j)
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( PartA + CapG91 * PartB )  / RBar
            U1[1, j] = 0.5 *  ( UP1(1, j) + U1(1, j) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
            U1[2, j] = 0.5 *  ( UP1(2, j) + U1(2, j) + D1 *  ( UP1(1, j) - UP1(1, j - 1) ) )
            U1[3, j] = 0.5 *  ( UP1(3, j) + U1(3, j) + DTau * UP1(1, j) / RBar )
        #...  Corrector : Special Case At jMax2% = 1 : Material #2
        # Backward Diff Scheme; Need Values In Material #1 At Grid Node jMax1%-1
        # Find Cauchy Radial Stress In Material #1; Grid Node jMax1%-1
        RLR = UP1(2, jMax1 - 1)
        RLT = UP1(3, jMax1 - 1)
        RCauch = RLR - RLT *  ( RLR * RLT )  **  ( - 1 / 3 )
        RCauch = RCauch + CapG91 *  ( 1 / RLR - RLR **  ( - 10 )  * RLT **  ( - 9 ) )
        RCauch = RCauch / RLT
        # Find Psuedo Rlr# Which Would Be In Material #1 And At Above Grid Node
        # Retain Psuedo Rlt# In Material #1 = Actual Rlt# In Material #2
        # Note That Resultant Rlr# Is Returned In Common Block
        Call(FndRLR(RCauch, CapG92, Phi21))
        # Continue With Backward Difference Scheme; Required RLr# Was Returned
        RBar = RB
        RLT = UP1(3, jMax1 - 1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
        RLR = UP2(2, 1)
        RLT = UP2(3, 1)
        # ptj fails here and below... but problem likely to be in Predictor step
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )  / RBar
        U2[1, 1] = 0.5 *  ( UP2(1, 1) + U2(1, 1) - D1 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
        U2[2, 1] = UP2(2, 1) + U2(2, 1) + D1 *  ( UP2(1, 1) - UP1(1, jMax1 - 1) )
        U2[2, 1] = 0.5 * U2(2, 1)
        U2[3, 1] = 0.5 *  ( UP2(3, 1) + U2(3, 1) + DTau * UP2(1, 1) / RBar )
        #...  Continuation Of Corrector Step For 2 < j% < jMax2% : Material #2
        for j% in vbForRange(2, jMax2):
            RBar = RB +  ( j - 1 )  * DRBar2
            RLR = UP2(2, j)
            RLT = UP2(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
            RLR = UP2(2, j - 1)
            RLT = UP2(3, j - 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )
            RLR = UP2(2, j)
            RLT = UP2(3, j)
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( Phi21 / Beta21 )  *  ( PartA + CapG92 * PartB )  / RBar
            U2[1, j] = 0.5 *  ( UP2(1, j) + U2(1, j) - D2 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
            U2[2, j] = 0.5 *  ( UP2(2, j) + U2(2, j) + D2 *  ( UP2(1, j) - UP2(1, j - 1) ) )
            U2[3, j] = 0.5 *  ( UP2(3, j) + U2(3, j) + DTau * UP2(1, j) / RBar )
        #...  Corrector : Special Case At Jmax3% = 1 : Material #3
        # Backward Diff Scheme; Need Values In Material #2 At Grid Node Jmax2%-2
        # Find Cauchy Ra#Dial Stress In Material #2; Grid Node Jmax2%-1
        RLR = UP2(2, jMax2 - 1)
        RLT = UP2(3, jMax2 - 1)
        RCauch = RLR - RLT *  ( RLR * RLT )  **  ( - 1 / 3 )
        RCauch = RCauch + CapG92 *  ( 1 / RLR - RLR **  ( - 10 )  * RLT **  ( - 9 ) )
        RCauch = Phi21 *  ( RCauch / RLT )
        # Find Psuedo Rlr# Which Would Be In Material #1 And At Above Grid Node
        # Retain Psuedo Rlt# In Material #1 = Actual Rlt# In Material #2
        # Note That Resultant Rlr# Is Returned In Common Block
        Call(FndRLR(RCauch, CapG93, Phi31))
        # Continue With Backward Difference Scheme; Required Rlr# Was Returned
        RBar = RC
        RLT = UP2(3, jMax2 - 1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold2 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
        RLR = UP3(2, 1)
        RLT = UP3(3, 1)
        PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
        PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
        Hold1 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
        PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
        PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
        Hold3 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )  / RBar
        U3[1, 1] = 0.5 *  ( UP3(1, 1) + U3(1, 1) - D2 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
        U3[2, 1] = UP3(2, 1) + U3(2, 1) + D2 *  ( UP3(1, 1) - UP2(1, jMax2 - 1) )
        U3[2, 1] = 0.5 * U3(2, 1)
        U3[3, 1] = 0.5 *  ( UP3(3, 1) + U3(3, 1) + DTau * UP3(1, 1) / RBar )
        #...  Continuation Of Corrector Step For 2 < J% < Jmax3%-1 : Material #3
        for j% in vbForRange(2, jMax3 - 1):
            RBar = RC +  ( j - 1 )  * DRBar3
            RLR = UP3(2, j)
            RLT = UP3(3, j)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold1 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
            RLR = UP3(2, j - 1)
            RLT = UP3(3, j - 1)
            PartA = RLT *  ( RLR * RLT )  **  ( - 1 / 3 )  - RLR
            PartB = RLT **  ( - 9 )  * RLR **  ( - 10 )  - 1 / RLR
            Hold2 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )
            RLR = UP3(2, j)
            RLT = UP3(3, j)
            PartA = ( RLT - RLR )  *  ( 1 +  ( RLR * RLT )  **  ( - 1 / 3 ) )
            PartB = ( 1 / RLT - 1 / RLR )  *  ( 1 -  ( RLR * RLT )  **  ( - 9 ) )
            Hold3 = ( Phi31 / Beta31 )  *  ( PartA + CapG93 * PartB )  / RBar
            U3[1, j] = 0.5 *  ( UP3(1, j) + U3(1, j) - D3 *  ( Hold1 - Hold2 )  - DTau * Hold3 )
            U3[2, j] = 0.5 *  ( UP3(2, j) + U3(2, j) + D3 *  ( UP3(1, j) - UP3(1, j - 1) ) )
            U3[3, j] = 0.5 *  ( UP3(3, j) + U3(3, j) + DTau * UP3(1, j) / RBar )
        #  ----------------- Write Out Results And Loop Time  -------------------
        #...  Print Out Every 10Th Data Point
        # WRITE(7,750) iLoop%, Tau#, Tau#*Speed1#, U1#(1,1), U1#(2,1), U1#(3,1)
        VBFiles.writeText(7, iLoop, "\t", Tau, "\t", Tau * Speed1, "\t", U1(1, 1), "\t", U1(2, 1), "\t", U1(3, 1), '\n')
        # WRITE(2,750) iLoop%, Tau#, Tau#*Speed1#, U1#(1,jMax1%), U1#(2,jMax1%), U1#(3,jMax1%)
        VBFiles.writeText(2, iLoop, "\t", Tau, "\t", Tau * Speed1, "\t", U1(1, jMax1), "\t", U1(2, jMax1), "\t", U1(3, jMax1), '\n')
        # WRITE(3,750) iLoop%, Tau#, Tau#*Speed1#, U2#(1,1), U2#(2,1), U2#(3,1)
        VBFiles.writeText(3, iLoop, "\t", Tau, "\t", Tau * Speed1, "\t", U2(1, 1), "\t", U2(2, 1), "\t", U2(3, 1), '\n')
        # WRITE(8,750) iLoop%, Tau#, Tau#*Speed1#, U2#(1,jMax2%), U2#(2,jMax2%), U2#(3,jMax2%)
        VBFiles.writeText(8, iLoop, "\t", Tau, "\t", Tau * Speed1, "\t", U2(1, jMax2), "\t", U2(2, jMax2), "\t", U2(3, jMax2), '\n')
        # WRITE(4,750) iLoop%, Tau#, Tau#*Speed1#, U3#(1,1), U3#(2,1), U3#(3,1)
        VBFiles.writeText(4, iLoop, "\t", Tau, "\t", Tau * Speed1, "\t", U3(1, 1), "\t", U3(2, 1), "\t", U3(3, 1), '\n')
        k = Int(( Tau + DTau *  ( 1 + TPrint ) )  / TPrint)
        if ( ( Tau <= k * TPrint )  and  ( Tau + DTau )  > k * TPrint ) :
            Call(FShock)
        #...  Bottom Of Outer Time Step Loop
    # close all the output files
    VBFiles.closeFile(2)
    VBFiles.closeFile(3)
    VBFiles.closeFile(4)
    VBFiles.closeFile(7)
    VBFiles.closeFile(8)
    VBFiles.closeFile(9)

def FndRLR(Target#, CAPG9X#, PhiXX#):
    i% = Variant()

    RLTSq# = Variant()

    RCauch# = Variant()

    Slope# = Variant()

    ConvTol# = Variant()
    # COMMON /COM5/ RA, RB, RC, RLR#, RLT#
    #...  Start With Guessed Value Of RLR# and Loop for Solution
    RLR = 0.8
    RLTSq = RLT * RLT
    #ConvTol# = 10 ^ (-6)
    ConvTol = 10 **  ( - 12 )      
    for i% in vbForRange(1, 2000):
        # converge via Newton method
        RCauch = RLR - RLT *  ( RLR * RLT )  **  ( - 1 / 3 )
        RCauch = RCauch + CAPG9X *  ( 1 / RLR - RLR **  ( - 10 )  * RLT **  ( - 9 ) )
        RCauch = PhiXX *  ( RCauch / RLT )
        if ( Abs(RCauch - Target) < ConvTol ) :
            break
        Slope = 1 + RLTSq *  ( ( RLR * RLT )  **  ( - 4 / 3 ) )  / 3
        Slope = Slope + CAPG9X *  ( 10 * RLR **  ( - 11 )  * RLT **  ( - 9 )  - RLR **  ( - 2 ) )
        Slope = PhiXX *  ( Slope / RLT )
        RLR = RLR -  ( RCauch - Target )  / Slope
        # Debug.Print i%, RLR#, RCauch# - Target#
    #WRITE(6,1020) k% - 1
    #1020   FORMAT(' ','ERROR IN FNDRLR# AFTER ',I8,' ITERATIONS')
    #Stop

def FShock():
    k% = Variant()

    RAvg# = Variant()

    Radius# = Variant()

    YAvg# = Variant()

    Total# = Variant()
    # COMMON /COM1/ CAPG91, CAPG92, CAPG93
    # COMMON /COM2/ COUR, DRBar1#, DRBAR2, DRBAR3, DTau#, SPEED1
    # COMMON /COM3/ JMAX1, JMAX2, JMAX3, ILOOP, IPRINT
    # COMMON /COM5/ RA, RB, RC, RLR, RLT
    # COMMON /COM6/ Tau, TAUMAX, TPRINT
    # COMMON /COM7/ U1(3,2798), UP1(3,2798)
    # COMMON /COM8/ U3(3,2134), UP2(3,2134)
    # COMMON /COM9/ U3(3,16543), UP3(3,16543)
    # OPEN (UNIT=9, FILE='CCYL1-9.DAT', STATUS='UNKNOWN')
    #Open "CCyl1-9Out.dat" For Append As #9
    VBFiles.writeText(9, '-----------', '\n')
    VBFiles.writeText(9, 'Solution Matrix U(i%,k%) At Time Tau# = ', Tau, '\n')
    # Write(9,1200)
    #    1200     FORMAT(///)
    # Write(9,1220) Tau#
    #   1220     FORMAT(/,'Solution Matrix U1#(I,k%) At Time Tau# = ',E16.9,/)
    Total = 0
    for k% in vbForRange(1, jMax1):
        RAvg = RA +  ( k - 1 )  * DRBar1 + DRBar1 / 2
        Radius = RA +  ( k - 1 )  * DRBar1
        YAvg = 0.5 *  ( U1(1, k) + U1(1, k + 1) )
        Total = Total + YAvg * RAvg * RAvg * DRBar1
        VBFiles.writeText(9, k, "\t", Radius, "\t", U1(1, k), "\t", U1(2, k), "\t", U1(3, k), '\n')
        #WRITE(9,1240) k%, Radius#, U1#(1,k%), U1#(2,k%), U1#(3,k%)
        #1240       FORMAT(' ',I9,4(1X,E16.9))
    for k% in vbForRange(1, jMax2):
        RAvg = RB +  ( k - 1 )  * DRBar2 + DRBar2 / 2
        Radius = RB +  ( k - 1 )  * DRBar2
        YAvg = 0.5 *  ( U2(1, k) + U2(1, k + 1) )
        Total = Total + YAvg * RAvg * RAvg * DRBar2
        VBFiles.writeText(9, k, "\t", Radius, "\t", U2(1, k), "\t", U2(2, k), "\t", U2(3, k), '\n')
    for k% in vbForRange(1, jMax3):
        RAvg = RC +  ( k - 1 )  * DRBar3 + DRBar3 / 2
        Radius = RC +  ( k - 1 )  * DRBar3
        YAvg = 0.5 *  ( U3(1, k) + U3(1, k + 1) )
        Total = Total + YAvg * RAvg * RAvg * DRBar3
        VBFiles.writeText(9, k, "\t", Radius, "\t", U3(1, k), "\t", U3(2, k), "\t", U3(3, k), '\n')
    #WRITE(9,1300) JMAX1, JMAX2, JMAX3, TAU, TOTAL
    # 1300     FORMAT(' ','JMAX1 JMAX2 JMAX3 TAU TOTAL ',3I7,2(1X,E16.9))
    VBFiles.writeText(9, jMax1, "\t", jMax2, "\t", jMax3, "\t", Tau, "\t", Total, '\n')
    #Close #9

# VB2PY (UntranslatedCode) Attribute VB_Name = "CCylMain"
# VB2PY (UntranslatedCode) Option Explicit
# VB2PY (UntranslatedCode) Option Base 1
 
by

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling