def hFit(a,T):
    """
    a = [a1 ... a6]
    T is numpy array
    Returns h and dh/dT (where by h, H/RT is meant)
    """
    h = a[0] + a[1]*T/2 + a[2]*T**2/3 + a[3]*T**3/4 + a[4]*T**4/5 + a[5]/T
    dhdT = a[1]/2 + a[2]*2*T/3 + a[3]*3*T**2/4 + a[4]*4*T**3/5 - a[5]/T**2
    return h,dhdT

def sFit(a,T):
    """
    a = [a1 ... a7]
    T is numpy array
    Returns s and ds/dT (where by s, S/R is meant)
    """
    s = a[0]*np.log(T) + a[1]*T + a[2]*T**2/2 + a[3]*T**3/3 + a[4]*T**4/4 + a[6]
    dsdT = a[0]/T + a[1] + a[2]*T + a[3]*T**2 + a[4]*T**3
    return s,dsdT
    

def coeffImport(species):
    """
    Takes a Cantera species object
    """
    midT = species.thermo.coeffs[0]
    minT = species.thermo.min_temp
    maxT = species.thermo.max_temp
    highCoeffs = species.thermo.coeffs[1:8]
    lowCoeffs = species.thermo.coeffs[8:15]      

    return minT,midT,maxT,lowCoeffs,highCoeffs

def continuity(mech,absTol=1e-5):
    """
    Takes a string representing Cantera mechanism, e.g. 'gri30.cti'
    
    absTol is the absolute tolerance used when checking for C0 and C1
    continuity. Can vary the default value if desired.
    Absolute rather than relative tolerance used to avoid division by zero
    since some species (e.g. Ar) have zero slope for all T.
    """
    print('Mechanism file '+mech)
    gas = ct.Solution(mech)
    ns = gas.n_species
    ne= gas.n_elements
    nr = gas.n_reactions
    """
    Compute gas standard state properties for each species
    """
    T0 = 298.15
    P0 = 101325.
    gas.TP = T0, P0
    R = ct.gas_constant          # universal gas constant
    w = np.zeros(ns)
    hs = np.zeros(ns)
    cps = np.zeros(ns)
    ss = np.zeros(ns)
    deltahf = np.zeros(ns)
    for k in range(gas.n_species):
        w[k]=gas.molecular_weights[k]           # molecular weight of the ith species
        hs[k] = gas.standard_enthalpies_RT[k]   #specific enthalpy of the ith species
        deltahf[k] = 1E-6*hs[k]*R*gas.T         # heat of formation  (kJ/mol)
        cps[k] = gas.standard_cp_R[k]           # heat capacity of the ith species
        ss[k] = gas.standard_entropies_R[k]     # entropy of the ith species
    
    print('Number of elements = '+str(ne))
    print('Number of species = '+str(ns))
    print('Number of reactions = '+str(nr))
    S = ct.Species.listFromFile(mech) # list of species objects
    nCoeffs = int((S[0].thermo.n_coeffs-1)/2) # number of coefficients per polynomial, i.e. identifies NASA-7 vs. NASA-9s
    globalMinT = gas.min_temp
    globalMaxT = gas.max_temp
    print('NASA-'+str(nCoeffs)+' polynomials')
    print('Range of valid temperatures for all fits:')
    print('Max(Min. T) for all species = '+str(globalMinT)+' K')
    print('Min(Max. T) for all species = '+str(globalMaxT)+' K')  
    print("Absolute error tolerance for C0 and C1 {:.2e}".format(absTol))
    print('\n')
    f = open("BadSpecies.txt","w+")
    print('Species\tCp C0\tCp C1\th C0\th C1\ts C0\ts C1\tMin T\tMid T\tMax T\tW\tCp/R\tS/R\tH/RT\tDeltaHf')
    cpjumpmax = 0.
    ibad = 0
    for i,species in enumerate(S): 
        minT,midT,maxT,lowCoeffs,highCoeffs = coeffImport(species)    

        # Polynomial class takes coefficients in ascending powers of x
        lowPolyCp = P(lowCoeffs[0:5])
        highPolyCp = P(highCoeffs[0:5])      
        
        # Check for continuity
        cpjump = abs(lowPolyCp(midT)-highPolyCp(midT))
        if cpjump > cpjumpmax:
            cpjumpmax = cpjump
            spmax = species
        cpc0 =  cpjump < absTol
        if not cpc0:
            f.write('{0:18} {1:10.2f} {2:10.2f} {3:10.2f}  \n'.format(species.name,minT,midT,maxT))
            ibad = ibad + 1
            
        cpc1 = abs(lowPolyCp.deriv()(midT)-highPolyCp.deriv()(midT)) < absTol    
        
        hc0 = abs(hFit(lowCoeffs[0:6],midT)[0]-hFit(highCoeffs[0:6],midT)[0]) < absTol
        hc1 = abs(hFit(lowCoeffs[0:6],midT)[1]-hFit(highCoeffs[0:6],midT)[1]) < absTol
        
        sc0 = abs(sFit(lowCoeffs[0:7],midT)[0]-sFit(highCoeffs[0:7],midT)[0]) < absTol
        sc1 = abs(sFit(lowCoeffs[0:7],midT)[1]-sFit(highCoeffs[0:7],midT)[1]) < absTol 
       
        print(species.name+'\t'+str(cpc0)+'\t'+str(cpc1)+'\t'+str(hc0)+'\t'+str(hc1)+'\t'+str(sc0)+'\t'+ \
              str(sc1)+'\t'+str(minT)+'\t'+str(midT)+'\t'+str(maxT)+'\t{:.2f}'.format(w[i])+'\t{:.2f}'.format(cps[i])+ \
              '\t{:.2f}'.format(ss[i])+'\t{:7.2f}'.format(hs[i])+'\t{:7.2f}'.format(deltahf[i]))      

    print('\n'"Wrote {:d} species to BadSpecies.txt file".format(ibad))
    print('\n'+spmax.name+" has the maximum Cp/R jump of {:.2e}".format(cpjumpmax))
    jumps(spmax)
    plotter(spmax)
    plt.show()
    f.close()
    return
    
def plotter(species):
    """
    Takes a Cantera species object
    """
    minT,midT,maxT,lowCoeffs,highCoeffs = coeffImport(species)
    lowPolyCp = P(lowCoeffs[0:5])
    highPolyCp = P(highCoeffs[0:5])    
    lowTrange = np.linspace(minT,midT)
    highTrange = np.linspace(midT,maxT) 

    plt.figure()
    plt.plot(lowTrange,lowPolyCp(lowTrange),label='Low')
    plt.plot(highTrange,highPolyCp(highTrange),label='High')
    plt.legend()
    plt.title(r'$C_p$ fits for '+species.name)
    plt.xlabel('T [K]')
    plt.ylabel(r'$C_p$/R')

    plt.figure()
    plt.plot(lowTrange,hFit(lowCoeffs[0:6],lowTrange)[0],label='Low')
    plt.plot(highTrange,hFit(highCoeffs[0:6],highTrange)[0],label='High')
    plt.legend()
    plt.title(r'h fits for '+species.name)
    plt.xlabel('T [K]')
    plt.ylabel('h/RT')

    plt.figure()
    plt.plot(lowTrange,sFit(lowCoeffs[0:7],lowTrange)[0],label='Low')
    plt.plot(highTrange,sFit(highCoeffs[0:7],highTrange)[0],label='High')
    plt.legend()
    plt.title(r's fits for '+species.name)
    plt.xlabel('T [K]')
    plt.ylabel('s/R')
    return

def jumps(species):
    """
    Takes a cantera species object
    """
    
    minT,midT,maxT,lowCoeffs,highCoeffs = coeffImport(species)
    lowPolyCp = P(lowCoeffs[0:5])
    highPolyCp = P(highCoeffs[0:5])    
    lowTrange = np.linspace(minT,midT)
    highTrange = np.linspace(midT,maxT) 

    CpJump = lowPolyCp(midT)-highPolyCp(midT)
    CpTJump = lowPolyCp.deriv()(midT)-highPolyCp.deriv()(midT)
    HJump = hFit(lowCoeffs[0:6],midT)[0]-hFit(highCoeffs[0:6],midT)[0]
    HTJump = hFit(lowCoeffs[0:6],midT)[1]-hFit(highCoeffs[0:6],midT)[1]
    SJump  = sFit(lowCoeffs[0:7],midT)[0]-sFit(highCoeffs[0:7],midT)[0]
    STJump = sFit(lowCoeffs[0:7],midT)[1]-sFit(highCoeffs[0:7],midT)[1] 

    print('\n')
    print(species.name+" discontinuities at {:.2f} K".format(midT))
    print("Cp/R  {:.2e}".format(CpJump))
    print("Cp'/R {:.2e}".format(CpTJump))
    print("H/RT  {:.2e}".format(HJump))
    print("H/RT' {:.2e}".format(HTJump))
    print("S/R   {:.2e}".format(SJump))
    print("S'/R  {:.2e}".format(STJump))

    Tzero = 298.15
    R = ct.gas_constant
    Cp = R*lowPolyCp(Tzero)/1000.
    H = R*Tzero*hFit(lowCoeffs[0:6],Tzero)[0]/1.E06
    S = R*sFit(lowCoeffs[0:7],Tzero)[0]/1000.
    print('\n')
    print("Minimum temperature  {:.2f} K".format(minT))
    print("Midpoint temperature {:.2f} K".format(midT))
    print("Maximum temperature  {:.2f} K".format(maxT))
    print('\n'+species.name+" properties at {:.2f} K".format(Tzero))
    print("Cp     {:.3f} J/mol-K   {:.3f} cal/mol-K".format(Cp, Cp/4.184))
    print("H       {:.3f} kJ/mol    {:.3f} cal/K".format(H,H/4.184))
    print("S     {:.3f} J/mol-K  {:.3f} cal/mol-K".format(S,S/4.184))

    return






 
by

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling