import asyncio import json import time import requests_async as requests import re import httpx import h11 """Module to read production and consumption values from an Enphase Envoy on the local network""" PRODUCTION_REGEX = \ r'<td>Currentl.*</td>\s+<td>\s*(\d+|\d+\.\d+)\s*(W|kW|MW)</td>' DAY_PRODUCTION_REGEX = \ r'<td>Today</td>\s+<td>\s*(\d+|\d+\.\d+)\s*(Wh|kWh|MWh)</td>' WEEK_PRODUCTION_REGEX = \ r'<td>Past Week</td>\s+<td>\s*(\d+|\d+\.\d+)\s*(Wh|kWh|MWh)</td>' LIFE_PRODUCTION_REGEX = \ r'<td>Since Installation</td>\s+<td>\s*(\d+|\d+\.\d+)\s*(Wh|kWh|MWh)</td>' class EnvoyReader(): """Instance of EnvoyReader""" # P0 for older Envoy model C, s/w < R3.9 no json pages # P for production data only (ie. Envoy model C, s/w >= R3.9) # PC for production and consumption data (ie. Envoy model S) message_consumption_not_available = ("Consumption data not available for " "your Envoy device.") def __init__(self, host, username="envoy", password=""): self.host = host.lower() self.username = username self.password = password self.endpoint_type = "" self.endpoint_url = "" self.serial_number_last_six = "" def hasProductionAndConsumption(self, json): """Check if json has keys for both production and consumption""" return "production" in json and "consumption" in json async def detect_model(self): """Method to determine if the Envoy supports consumption values or only production""" self.endpoint_url = "http://{}/production.json".format(self.host) response = await requests.get( self.endpoint_url, timeout=30, allow_redirects=False) if response.status_code == 200 and self.hasProductionAndConsumption(response.json()): self.endpoint_type = "PC" return else: self.endpoint_url = "http://{}/api/v1/production".format(self.host) response = await requests.get( self.endpoint_url, timeout=30, allow_redirects=False) if response.status_code == 200: self.endpoint_type = "P" # Envoy-C, production only return else: self.endpoint_url = "http://{}/production".format(self.host) response = await requests.get( self.endpoint_url, timeout=30, allow_redirects=False) if response.status_code == 200: self.endpoint_type = "P0" # older Envoy-C return self.endpoint_url = "" raise RuntimeError( "Could not connect or determine Envoy model. " + "Check that the device is up at 'http://" + self.host + "'.") async def get_serial_number(self): """Method to get last six digits of Envoy serial number for auth""" try: response = await requests.get( "http://{}/info.xml".format(self.host), timeout=30, allow_redirects=False) if len(response.text) > 0: sn = response.text.split("<sn>")[1].split("</sn>")[0][-6:] self.serial_number_last_six = sn except requests.exceptions.ConnectionError: return self.create_connect_errormessage() # except # print( # "Unable to find device serial number, " + # "this is needed to read inverter production.") async def call_api(self): """Method to call the Envoy API""" # detection of endpoint if not already known if self.endpoint_type == "": await self.detect_model() response = await requests.get( self.endpoint_url, timeout=30, allow_redirects=False) if self.endpoint_type == "P" or self.endpoint_type == "PC": return response.json() # these Envoys have .json if self.endpoint_type == "P0": return response.text # these Envoys have .html def create_connect_errormessage(self): """Create error message if unable to connect to Envoy""" return ("Unable to connect to Envoy. " + "Check that the device is up at 'http://" + self.host + "'.") def create_json_errormessage(self): """Create error message if unable to parse JSON response""" return ("Got a response from '" + self.endpoint_url + "', but metric could not be found. " + "Maybe your model of Envoy doesn't " + "support the requested metric.") async def production(self): """Call API and parse production values from response""" if self.endpoint_type == "": await self.detect_model() try: if self.endpoint_type == "PC": raw_json = await self.call_api() try: production = raw_json["production"][1]["wNow"] except IndexError: production = raw_json["production"][0]["wNow"] else: if self.endpoint_type == "P": raw_json = await self.call_api() production = raw_json["wattsNow"] else: if self.endpoint_type == "P0": text = await self.call_api() match = re.search( PRODUCTION_REGEX, text, re.MULTILINE) if match: if match.group(2) == "kW": production = float(match.group(1))*1000 else: if match.group(2) == "mW": production = float( match.group(1))*1000000 else: production = float(match.group(1)) else: raise RuntimeError( "No match for production, check REGEX " + text) return int(production) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def consumption(self): """Call API and parse consumption values from response""" if self.endpoint_type == "": await self.detect_model() if self.endpoint_type == "P" or self.endpoint_type == "P0": return self.message_consumption_not_available try: raw_json = await self.call_api() consumption = raw_json["consumption"][0]["wNow"] return int(consumption) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def daily_production(self): """Call API and parse todays production values from response""" if self.endpoint_type == "": await self.detect_model() try: if self.endpoint_type == "PC": raw_json = await self.call_api() daily_production = raw_json["production"][1]["whToday"] else: if self.endpoint_type == "P": raw_json = await self.call_api() daily_production = raw_json["wattHoursToday"] else: if self.endpoint_type == "P0": text = await self.call_api() match = re.search( DAY_PRODUCTION_REGEX, text, re.MULTILINE) if match: if match.group(2) == "kWh": daily_production = float( match.group(1))*1000 else: if match.group(2) == "MWh": daily_production = float( match.group(1))*1000000 else: daily_production = float( match.group(1)) else: raise RuntimeError( "No match for Day production, " "check REGEX " + text) return int(daily_production) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def daily_consumption(self): """Call API and parse todays consumption values from response""" if self.endpoint_type == "": await self.detect_model() if self.endpoint_type == "P" or self.endpoint_type == "P0": return self.message_consumption_not_available try: raw_json = await self.call_api() daily_consumption = raw_json["consumption"][0]["whToday"] return int(daily_consumption) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def seven_days_production(self): """Call API and parse the past seven days production values from the response""" if self.endpoint_type == "": await self.detect_model() try: if self.endpoint_type == "PC": raw_json = await self.call_api() seven_days_production = raw_json["production"][1]["whLastSevenDays"] else: if self.endpoint_type == "P": raw_json = await self.call_api() seven_days_production = raw_json["wattHoursSevenDays"] else: if self.endpoint_type == "P0": text = await self.call_api() match = re.search( WEEK_PRODUCTION_REGEX, text, re.MULTILINE) if match: if match.group(2) == "kWh": seven_days_production = float( match.group(1))*1000 else: if match.group(2) == "MWh": seven_days_production = float( match.group(1))*1000000 else: seven_days_production = float( match.group(1)) else: raise RuntimeError("No match for 7 Day production, " "check REGEX " + text) return int(seven_days_production) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def seven_days_consumption(self): """Call API and parse the past seven days consumption values from the response""" if self.endpoint_type == "": await self.detect_model() if self.endpoint_type == "P" or self.endpoint_type == "P0": return self.message_consumption_not_available try: raw_json = await self.call_api() seven_days_consumption = raw_json["consumption"][0]["whLastSevenDays"] return int(seven_days_consumption) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def lifetime_production(self): """Call API and parse the lifetime of production from response""" if self.endpoint_type == "": await self.detect_model() try: if self.endpoint_type == "PC": raw_json = await self.call_api() lifetime_production = raw_json["production"][1]["whLifetime"] else: if self.endpoint_type == "P": raw_json = await self.call_api() lifetime_production = raw_json["wattHoursLifetime"] else: if self.endpoint_type == "P0": text = await self.call_api() match = re.search( LIFE_PRODUCTION_REGEX, text, re.MULTILINE) if match: if match.group(2) == "kWh": lifetime_production = float( match.group(1))*1000 else: if match.group(2) == "MWh": lifetime_production = float( match.group(1))*1000000 else: lifetime_production = float( match.group(1)) else: raise RuntimeError( "No match for Lifetime production, " "check REGEX " + text) return int(lifetime_production) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def lifetime_consumption(self): """Call API and parse the lifetime of consumption from response""" if self.endpoint_type == "": await self.detect_model() if self.endpoint_type == "P" or self.endpoint_type == "P0": return self.message_consumption_not_available try: raw_json = await self.call_api() lifetime_consumption = raw_json["consumption"][0]["whLifetime"] return int(lifetime_consumption) except requests.exceptions.ConnectionError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError): return self.create_json_errormessage() async def inverters_production(self): """Hit a different Envoy endpoint and get the production values for individual inverters""" """If a password was not given as an argument when instantiating the EnvoyReader object than use the last six numbers of the serial number as the password. Otherwise use the password argument value.""" if self.password == "": if self.serial_number_last_six == "": await self.get_serial_number() self.password = self.serial_number_last_six try: async with httpx.AsyncClient() as client: response = await client.get("http://{}/api/v1/production/inverters" .format(self.host), timeout=30, auth=httpx.DigestAuth(self.username, self.password)) if response is not None and response.status_code != 401: response_dict = {} for item in response.json(): response_dict[item["serialNumber"]] = [item["lastReportWatts"], time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(item["lastReportDate"]))] return response_dict else: response.raise_for_status() except httpx.HTTPError: return self.create_connect_errormessage() except (json.decoder.JSONDecodeError, KeyError, IndexError, TypeError): return self.create_json_errormessage() except h11.RemoteProtocolError: await response.close() async def update(self): """ Single entry point for Home Assistant """ data = {} tasks = [ self.production(), self.consumption(), self.daily_production(), self.daily_consumption(), self.seven_days_production(), self.seven_days_consumption(), self.lifetime_production(), self.lifetime_consumption(), self.inverters_production() ] results = await asyncio.gather(*tasks, return_exceptions=True) for key, result in zip(tasks, results): key = key.__name__ data[key] = result return data def run_in_console(self): """If running this module directly, print all the values in the console.""" print("Reading...") loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather( self.production(), self.consumption(), self.daily_production(), self.daily_consumption(), self.seven_days_production(), self.seven_days_consumption(), self.lifetime_production(), self.lifetime_consumption(), self.inverters_production())) print("production: {}".format(results[0])) print("consumption: {}".format(results[1])) print("daily_production: {}".format(results[2])) print("daily_consumption: {}".format(results[3])) print("seven_days_production: {}".format(results[4])) print("seven_days_consumption: {}".format(results[5])) print("lifetime_production: {}".format(results[6])) print("lifetime_consumption: {}".format(results[7])) print("inverters_production: {}".format(results[8])) if __name__ == "__main__": HOST = input("Enter the Envoy IP address or host name, " + "or press enter to use 'envoy' as default: ") USERNAME = input("Enter the Username for Inverter data authentication, " + "or press enter to use 'envoy' as default: ") PASSWORD = input("Enter the Password for Inverter data authentication, " + "or press enter to use the default password: ") if HOST == "": HOST = "envoy" if USERNAME == "": USERNAME = "envoy" if PASSWORD == "": TESTREADER = EnvoyReader(HOST, USERNAME) else: TESTREADER = EnvoyReader(HOST, USERNAME, PASSWORD) TESTREADER.run_in_console()
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |