import pulp # from pyomo.environ import * m = p.LpProblem("Maximize profit", p.LpMaximize) print("VARIABLES") n = int(input("Enter the size of list of variables: ")) numList = list((num) for num in input("Enter the variable names separated by space: ").strip().split()) print("New List: ", numList) for k in range(n): numList[k] = p.LpVariable(numList[k], lowBound=0, cat='Continuous') # Defining objective function # problem ask us to maximize the profit # objective is to maximize z = 2x1 + x2 m += 2*numList[0] + numList[1] # constraint1; x2 <= 10 m += numList[1] <= 10 # constraint2; 2x1 + 5x2 <= 60 m += 2*numList[0] + 5*numList[1] <= 60 # constraint3; x1 + 3x2 + 3x3 <=300 m += numList[0] + numList[1] <= 18 # constraint4; 3*x1 + x2 <=44 m += 3*numList[0] + numList[1] <= 44 # linear problem solver of pulp library print(m) status = m.solve() # Solver print(p.LpStatus[status]) # The solution status for k in range(n): print(p.value(numList[k]),end=' ') print(p.value(m.objective))