#To do: #-Strategy refine #-Buy time in RL not correct #-Load Backlog from file #-GUI #-Plotting in same window #x # #Trading bot import pip import yfinance as yf import numpy as np import pandas as pd import ta import math from math import sqrt import matplotlib.pyplot as plt import pandas_datareader as web import pandas as pd from scipy.signal import savgol_filter from scipy import optimize from sklearn import linear_model from datetime import datetime import sys from ta.volatility import BollingerBands import degiroapi from degiroapi.product import Product from degiroapi.order import Order from degiroapi.utils import pretty_json import schedule import time from tkinter import * pd.set_option('display.max_columns', None) class Stocks: Ticker = ['TWTR'] TickerSeries = ['AAPL','AMD','SPCE','TWTR','NFLX','TSLA','PFE','ETSY', 'SURF', 'WATT', 'MOXC', 'PCG', 'SQ', 'RH', 'SBUX', 'COIN'] def init(): #Initilize variables global Budget Budget = 1000 global Support_counter Support_counter = 0 def Timer(): global Hours global now now = datetime.now() Time = now.hour - datetime.strptime('15:30:00', '%H:%M:%S').hour Hours = str(Time) + 'h' return (Hours, now) def Get_data(stock,range): #Get stock data global Stock_data Stock_data = yf.download(tickers=stock,period=range,interval='1m') #Get rid of unnecesary columns Stock_data = Stock_data.drop('Open',1) Stock_data = Stock_data.drop('High',1) Stock_data = Stock_data.drop('Low',1) Stock_data = Stock_data.drop('Close',1) DataSet = pd.DataFrame() DataSet = Stock_data.copy() return (DataSet) def Get_data_range(stock,From,To): #Get stock data global Stock_data Stock_data = yf.download(tickers=stock,start=From,stop=To,interval='1m') #Get rid of unnecesary columns Stock_data = Stock_data.drop('Open',1) Stock_data = Stock_data.drop('High',1) Stock_data = Stock_data.drop('Low',1) Stock_data = Stock_data.drop('Close',1) DataSet = pd.DataFrame() DataSet = Stock_data.copy() return (DataSet) def Data_init(): global DataSet DataSet = pd.DataFrame() DataSet['Price'] = Stock_data['Adj Close'].round(4) DataSet['Price'].round(4) DataSet['Support'] = np.nan DataSet['Resistant'] = np.nan DataSet['Buy_Signal_Price'] = np.nan DataSet['Sell_Signal_Price'] = np.nan DataSet['Gain'] = np.nan DataSet['SuppLine'] = np.nan DataSet['ResLine'] = np.nan return (DataSet) def Trading_History(): global History History = pd.DataFrame() History['Buy Time'] = '' History['Stock'] = '' History['Buy Price'] = '' History['Amount'] = '' History['Sold'] = '' History['Sell Time'] = '' History['Sell Price'] = '' History['Gain'] = '' return () def Indicators(a,b,c,d): #Make SMA DataSet['SMA5'] = DataSet['Price'].rolling(window = a).mean() DataSet['SMA30'] = DataSet['Price'].rolling(window = b).mean() DataSet['SMA45'] = DataSet['Price'].rolling(window = c).mean() DataSet['EMA360'] = DataSet['Price'].ewm(span = d).mean() return (DataSet) def S_R(DataSet): Local_Max = np.nan Local_Min = np.nan Have_Min = 0 Have_Max = 0 for i in range (len(DataSet)): #Support if DataSet['Price'].iloc[i] < DataSet['Price'].iloc[i-1]: Local_Min = DataSet['Price'].iloc[i] DataSet['Resistant'].iloc[i-1] = Local_Max Local_Max = np.nan #Resistant if DataSet['Price'].iloc[i] > DataSet['Price'].iloc[i-1]: Local_Max = DataSet['Price'].iloc[i] DataSet['Support'].iloc[i-1] = Local_Min Local_Min = np.nan return (DataSet) def LinearR (DataSet): DataSet['ID'] = np.arange(len(DataSet)) LinearSuppData = pd.DataFrame() LinearSuppData = DataSet.copy() LinearResData = pd.DataFrame() LinearResData = DataSet.copy() LinearSuppData = LinearSuppData[LinearSuppData['Support'].notna()] LinearResData = LinearResData[LinearResData['Resistant'].notna()] DataSet['SuppMVA'] = LinearSuppData['Support'].rolling(window = 3).mean() DataSet['ResMVA'] = LinearResData['Resistant'].rolling(window = 3).mean() LinearSuppData.index = pd.to_numeric(pd.to_datetime(LinearSuppData.index)) LinearResData.index = pd.to_numeric(pd.to_datetime(LinearResData.index)) y_fit_Supp = LinearSuppData['Support'].to_numpy() x_fit_Supp = LinearSuppData['ID'].to_numpy().reshape(-1,1) y_fit_Res = LinearResData['Resistant'].to_numpy() x_fit_Res = LinearResData['ID'].to_numpy().reshape(-1,1) RegSuppLine = linear_model.LinearRegression() RegSuppLine.fit(x_fit_Supp,y_fit_Supp) RegResLine = linear_model.LinearRegression() RegResLine.fit(x_fit_Res,y_fit_Res) for i in range (len(DataSet)): DataSet['SuppLine'] = (DataSet['ID'] * RegSuppLine.coef_) + RegSuppLine.intercept_ DataSet['ResLine'] = (DataSet['ID'] * RegResLine.coef_) + RegResLine.intercept_ return(DataSet) def BollingerBands(m,l,h,DataSet): BBSet = pd.DataFrame() BBSet = DataSet DataSet['BB_MAV'] = DataSet['Price'].rolling(window = m).mean() DataSet['BB_SD'] = DataSet['Price'].rolling(window = m).std() DataSet['BB_LO'] = DataSet['BB_MAV'] - (BBSet['BB_SD']*l) DataSet['BB_HI'] = DataSet['BB_MAV'] + (BBSet['BB_SD']*h) return(DataSet) def Buy_Sell(DataSet, Stock): global Amount global History print (History) for i in range (len(DataSet)): #Buy conditions if (DataSet['Price'].iloc[i] <= DataSet['BB_LO'].iloc[i]) and (DataSet['Price'].iloc[i] < DataSet['SuppLine'].iloc[i] and DataSet['EMA360'].iloc[i] > DataSet['Price'].iloc[i]): try: if (not History['Stock'].iloc[History.loc[History['Sold'] == False].index[0]] == Stock): (DataSet['Buy_Signal_Price'].iloc[i]) = (DataSet['Price'].iloc[i]) Amount = math.floor(Budget/(DataSet['Buy_Signal_Price'].iloc[i])) History = History.append({'Buy Time': DataSet.index.time[i], 'Stock' : Stock, 'Buy Price' : round (DataSet['Buy_Signal_Price'][i], 4), 'Amount' : Amount, 'Sold' : False}, ignore_index=True) #print('BUY!', Amount, 'of', Stocks.Ticker, 'for', DataSet['Buy_Signal_Price'][i]) except IndexError: (DataSet['Buy_Signal_Price'].iloc[i]) = (DataSet['Price'].iloc[i]) Amount = math.floor(Budget/(DataSet['Buy_Signal_Price'].iloc[i])) History = History.append({'Buy Time': DataSet.index.time[i], 'Stock' : Stock, 'Buy Price' : round (DataSet['Buy_Signal_Price'][i], 4), 'Amount' : Amount, 'Sold' : False}, ignore_index=True) #print('BUY!', Amount, 'of', Stocks.Ticker, 'for', DataSet['Buy_Signal_Price'][i]) #Sell conditions if (not History['Sold'].all()): if (DataSet['Price'].iloc[i] >= DataSet['BB_HI'].iloc[i]) and (DataSet['Price'].iloc[i] > DataSet['ResLine'].iloc[i]) and (DataSet['EMA360'].iloc[i] < DataSet['Price'].iloc[i]) or ((DataSet['Price'][i]) <= (History['Buy Price'].iloc[History.loc[History['Sold'] == False].index[0]])*0.995): if (History['Stock'].iloc[History.loc[History['Sold'] == False].index[0]] == Stock): DataSet['Sell_Signal_Price'].iloc[i] = DataSet['Price'].iloc[i] for h in range (len(History)): if (History['Stock'].iloc[h] == Stock and History['Sold'].iloc[h] == False): History['Sold'].iloc[h] = True History['Sell Time'].iloc[h] = DataSet.index.time[i] History['Sell Price'].iloc[h] = round (DataSet['Sell_Signal_Price'][i], 4) History['Gain'].iloc[h] = (History['Sell Price'].iloc[h] - History['Buy Price'].iloc[h])*Amount #print('SELL!', Amount, 'of', Stocks.Ticker, 'for', DataSet['Sell_Signal_Price'][i]) print(History) return(DataSet, History) def Buy_Sell_RL(DataSet, Stock): global Amount global Bought global History #Buy conditions print((realprice[0]['data']['lastPrice'], '<=', DataSet['BB_LO'][-1]), (DataSet['Price'][-1], '<' , DataSet['SuppLine'][-1]), DataSet['EMA360'][-1],'>',DataSet['Price'][-1]) print((realprice[0]['data']['lastPrice'], '>=', DataSet['BB_HI'][-1]), (DataSet['Price'][-1], '>', DataSet['ResLine'][-1])) if (realprice[0]['data']['lastPrice'] <= DataSet['BB_LO'][-1]) and (realprice[0]['data']['lastPrice'] < DataSet['SuppLine'][-1]) and (DataSet['EMA360'][-1] > realprice[0]['data']['lastPrice']): try: if (not History['Stock'].iloc[History.loc[History['Sold'] == False].index[0]] == Stock): Amount = math.floor(Budget/(DataSet['Price'][-1])) degiro.buyorder(Order.Type.LIMIT, Product(products[0]).id, 1, Amount, round (realprice[0]['data']['lastPrice'], 2)) #Loging print('BUY!', Amount, 'of', Stock, 'for', realprice[0]['data']['lastPrice']) History = History.append({'Buy Time': DataSet.index.time[-1], 'Stock' : Stock, 'Buy Price' : round (realprice[0]['data']['lastPrice'], 4), 'Amount' : Amount, 'Sold' : False}, ignore_index=True) except IndexError: Amount = math.floor(Budget/(DataSet['Price'][-1])) degiro.buyorder(Order.Type.LIMIT, Product(products[0]).id, 1, Amount, round (realprice[0]['data']['lastPrice'], 2)) #Loging print('BUY!', Amount, 'of', Stock, 'for', DataSet['Buy_Signal_Price'].tail()) History = History.append({'Buy Time': DataSet.index.time[-1], 'Stock' : Stock, 'Buy Price' : round (realprice[0]['data']['lastPrice'], 4), 'Amount' : Amount, 'Sold' : False}, ignore_index=True) #Sell conditions if (not History['Sold'].all()): if (realprice[0]['data']['lastPrice'] >= DataSet['BB_HI'][-1]) and (realprice[0]['data']['lastPrice'] > DataSet['ResLine'][-1]) and (DataSet['EMA360'][-1] < realprice[0]['data']['lastPrice']) or ((realprice[0]['data']['lastPrice']) <= (History['Buy Price'].iloc[History.loc[History['Sold'] == False].index[0]])*0.998): if (History['Stock'].iloc[History.loc[History['Sold'] == False].index[0]] == Stock): degiro.sellorder(Order.Type.LIMIT, Product(products[0]).id, 1, Amount, round (realprice[0]['data']['lastPrice'], 2)) print('SELL!', Amount, 'of', Stock, 'for', realprice[0]['data']['lastPrice']) for h in range (len(History)): if (History['Stock'].iloc[h] == Stock and History['Sold'].iloc[h] == False): History['Sold'].iloc[h] = True History['Sell Time'].iloc[h] = DataSet.index.time[i] History['Sell Price'].iloc[h] = round (realprice[0]['data']['lastPrice'], 4) History['Gain'].iloc[h] = (History['Sell Price'].iloc[h] - History['Buy Price'].iloc[h])*Amount return(DataSet, History) def Degiro_Cash(): global degiro degiro = degiroapi.DeGiro() degiro.login("MoszneTrader", "B!z@nek77") cashfunds = degiro.getdata(degiroapi.Data.Type.CASHFUNDS) for data in cashfunds: print(data) return def Degiro(Stock): global products global realprice products = degiro.search_products(Stock) realprice = degiro.real_time_price(Product(products[0]).id, degiroapi.Interval.Type.One_Day) print(Product(products[0]).symbol,realprice[0]['data']['lastPrice']) #if np.isnan(DataSet['Buy_Signal_Price'].iloc[-1]) == False: #degiro.buyorder(Order.Type.LIMIT, Product(products[0]).id, 1, Amount, realprice[0]['data']['lastPrice']) #print('BUY!', Amount, 'of', Stocks.Ticker, 'for', DataSet['Buy_Signal_Price'].tail()) #if np.isnan(DataSet['Sell_Signal_Price'].iloc[-1]) == False: #degiro.sellorder(Order.Type.LIMIT, Product(products[0]).id, 1, Amount, realprice[0]['data']['lastPrice']) #print('SELL!', Amount, 'of', Stocks.Ticker, 'for', DataSet['Sell_Signal_Price'].tail()) #Ploting options def Plot(): #Ranges x = DataSet.index y = DataSet['Price'] plt.figure(figsize=(16, 10)) #plt.ylim([DataSet['Price'].min(),DataSet['Price'].max()]) plt.plot(x,y, label = 'Price') #plt.plot(DataSet['SMA5'], label= 'SMA5') #plt.plot(DataSet['SMA30'], label= 'SMA30') #plt.plot(SMA45['Adj Close'], label= 'SMA45') plt.plot(DataSet['EMA360'], label = 'EMA360') plt.plot(DataSet['Buy_Signal_Price'], label = 'Buy', marker ='^', color = 'green', ms = 10) plt.plot(DataSet['Sell_Signal_Price'], label = 'Sell', marker ='v', color = 'red', ms = 10) plt.plot(DataSet['BB_MAV'], label = 'BolingerBand MAV', linestyle = '--', color = 'blue') plt.plot(DataSet['BB_HI'], label = 'BolingerBand High', linestyle = '--', color = 'green') plt.plot(DataSet['BB_LO'], label = 'BolingerBand Low', linestyle = '--', color = 'red') #plt.fill_between(BBSet['BB_HI'], BBSet['BB_LO'], alpha = 0.1) plt.plot(DataSet['SuppLine'], label = 'Support', color = 'green') plt.plot(DataSet['ResLine'], label = 'Resistant', color = 'red') #plt.scatter(DataSet.index,DataSet['Support'], color = 'green', label = 'Support', s = 4) #plt.scatter(DataSet.index,DataSet['Resistant'], color = 'red', label = 'Resistant', s = 4) plt.plot(DataSet['SuppMVA'], label = 'SupportMVA', color = 'green', linestyle = ':') plt.plot(DataSet['ResMVA'], label = 'ResistanMVA', color = 'red', linestyle = ':') plt.title(Stocks.Ticker) plt.ylabel('Price $') plt.xlabel('Time') plt.legend(loc='upper left') plt.show() def GUI(): return def Tunning(Tickers): Row = -1 TunningSet = pd.DataFrame() TunningSet['Stock'] = Tickers TunningSet['Transactions'] = np.nan TunningSet['Biggest_Winrate'] = np.nan TunningSet['Biggest_Gain'] = np.nan TunningSet['Best_m'] = np.nan TunningSet['Best_l'] = np.nan TunningSet['Best_h'] = np.nan TunningSet['Best_a'] = np.nan TunningSet['Best_b'] = np.nan TunningSet['Best_c'] = np.nan TunningSet['Best_d'] = np.nan for t in Tickers: Best_m = 0 Best_l = 0 Best_h = 0 Best_d = 0 Biggest_Winrate = 0 Biggest_Gain = 0 Row = Row + 1 Wintrate = 0 TotalTrans = 0 Get_data(t,'6h') Data_init() DataCopy = DataSet.copy() for d in range(60,360,30): for m in range (16,22,2): for l in range (100,300,50): for h in range (100,300,50): DataCopy2 = DataCopy S_R(DataSet) LinearR(DataSet) Indicators(5,15,30,d) BollingerBands(m,l/100,h/100,DataCopy) print('Current Step:','m',m,'l',l,'h',h,'d',d) Buy_Sell(DataCopy) print ('Curent Ticker:', t) print ('Curent Winrate:',Winrate) print('Biggest Winrate:',Biggest_Winrate) print('Gains:', GainSum) #Plot() if (Winrate > Biggest_Winrate): TotalTrans = Total Biggest_Winrate = Winrate Biggest_Gain = GainSum Best_m = m Best_l = l Best_h = h Best_d = d DataCopy = DataCopy2 TunningSet['Transactions'] = TotalTrans TotalTrans = 0 TunningSet['Biggest_Winrate'].iloc[Row] = Biggest_Winrate TunningSet['Biggest_Gain'].iloc[Row] = Biggest_Gain TunningSet['Best_m'].iloc[Row] = Best_m TunningSet['Best_l'].iloc[Row] = Best_l TunningSet['Best_h'].iloc[Row] = Best_h TunningSet['Best_d'].iloc[Row] = Best_d #print('Best results:', Biggest_Winrate, Biggest_Gain) #print('Best m l h:', Best_m, Best_l/100, Best_h/100) print(TunningSet) return(TunningSet) def Manual(Ticker): Get_data(Ticker,'4h') Degiro_Cash() Data_init() Trading_History() #Get_data_range(Stocks.Ticker,'2021-06-04 11:00:00-04:00','2021-06-4 13:00:00-04:00') Indicators(5,15,30,360) S_R(DataSet) LinearR(DataSet) BollingerBands(30,2.25,2.25,DataSet) Buy_Sell(DataSet, Ticker) Degiro(Ticker) Plot() now = datetime.now() now = now.date() History.to_csv(f'History_{now}.csv') #print(DataSet) return() def Run(Tickers): Trading_History() History = pd.read_csv(f'History_RL{datetime.now().date()}.csv') while datetime.now() > datetime.now().replace(hour=15, minute=30, second=0, microsecond=0) and datetime.now() < datetime.now().replace(hour=22, minute=0, second=0, microsecond=0): print(datetime.now()) Degiro_Cash() Timer(); for t in Tickers: Get_data(t,'Hours') Data_init() #Get_data_range(Stocks.Ticker,'2021-06-04 11:00:00-04:00','2021-06-4 13:00:00-04:00') Indicators(5,15,30,360) S_R(DataSet) LinearR(DataSet) BollingerBands(30,2.25,2.25,DataSet) Degiro(t) Buy_Sell_RL(DataSet, t) print(History) current_date = datetime.now() current_date = now.date() History.to_csv(f'History_RL{current_date}.csv') time.sleep(15) else: print('It is not time yet!') return() init() GUI() #Tunning(Stocks.TickerSeries) #Manual('SPCE') Run(Stocks.TickerSeries) MainWindow = Tk() MainWindow.title('Trading Bot') F1 = Entry() F1.pack() #MainWindow.mainloop()
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |