# Scientific Calculator # from tkinter import * import math import parser import tkinter.messagebox root = Tk() root.title("Scientific Calculator") root.configure(background = 'white') root.resizable(width=False, height=False) root.geometry("480x568+450+90") #root.iconbitmap(r'D:\A Electrical Engineering Data\1st Semester\Python\Spyder\Lab\Calculator\Wwalczyszyn-Android-Style-Honeycomb-Calculator.ico') calc = Frame(root) calc.grid() # ===================================================================================================== # # Here are the Classes for all the Buttons in the Scientific Calculator. class Calc(): def __init__(self): self.total=0 self.current='' self.input_value=True self.check_sum=False self.op='' self.result=False def numberEnter(self, num): self.result=False firstnum=txtDisplay.get() secondnum=str(num) if self.input_value: self.current = secondnum self.input_value=False else: if secondnum == '.': if secondnum in firstnum: return self.current = firstnum+secondnum self.display(self.current) def sum_of_total(self): self.result=True self.current=float(self.current) if self.check_sum==True: self.valid_function() else: self.total=float(txtDisplay.get()) def display(self, value): txtDisplay.delete(0, END) txtDisplay.insert(0, value) def valid_function(self): if self.op == "add": self.total += self.current if self.op == "sub": self.total -= self.current if self.op == "multi": self.total *= self.current if self.op == "divide": self.total /= self.current if self.op == "mod": self.total %= self.current self.input_value=True self.check_sum=False self.display(self.total) def operation(self, op): self.current = float(self.current) if self.check_sum: self.valid_function() elif not self.result: self.total=self.current self.input_value=True self.check_sum=True self.op=op self.result=False def Clear_Entry(self): self.result = False self.current = "0" self.display(0) self.input_value=True def All_Clear_Entry(self): self.Clear_Entry() self.total=0 def pi(self): self.result = False self.current = math.pi self.display(self.current) def tau(self): self.result = False self.current = math.tau self.display(self.current) def e(self): self.result = False self.current = math.e self.display(self.current) def mathPM(self): self.result = False self.current = -(float(txtDisplay.get())) self.display(self.current) def squared(self): self.result = False self.current = math.sqrt(float(txtDisplay.get())) self.display(self.current) def cos(self): self.result = False self.current = math.cos(math.radians(float(txtDisplay.get()))) self.display(self.current) def cosh(self): self.result = False self.current = math.cosh(math.radians(float(txtDisplay.get()))) self.display(self.current) def tan(self): self.result = False self.current = math.tan(math.radians(float(txtDisplay.get()))) self.display(self.current) def tanh(self): self.result = False self.current = math.tanh(math.radians(float(txtDisplay.get()))) self.display(self.current) def sin(self): self.result = False self.current = math.sin(math.radians(float(txtDisplay.get()))) self.display(self.current) def sinh(self): self.result = False self.current = math.sinh(math.radians(float(txtDisplay.get()))) self.display(self.current) def log(self): self.result = False self.current = math.log(float(txtDisplay.get())) self.display(self.current) def exp(self): self.result = False self.current = math.exp(float(txtDisplay.get())) self.display(self.current) def acosh(self): self.result = False self.current = math.acosh(float(txtDisplay.get())) self.display(self.current) def asinh(self): self.result = False self.current = math.asinh(float(txtDisplay.get())) self.display(self.current) def expm1(self): self.result = False self.current = math.expm1(float(txtDisplay.get())) self.display(self.current) def lgamma(self): self.result = False self.current = math.lgamma(float(txtDisplay.get())) self.display(self.current) def degrees(self): self.result = False self.current = math.degrees(float(txtDisplay.get())) self.display(self.current) def log2(self): self.result = False self.current = math.log2(float(txtDisplay.get())) self.display(self.current) def log10(self): self.result = False self.current = math.log10(float(txtDisplay.get())) self.display(self.current) def log1p(self): self.result = False self.current = math.log1p(float(txtDisplay.get())) self.display(self.current) added_value = Calc() # ====================================================================================================== # # Here is the code for Display of Calculator. txtDisplay = Entry(calc, font=('Helvetica',20,'bold'),bg='black',fg='white', bd=30, width=28,justify=RIGHT) txtDisplay.grid(row=0,column=0, columnspan=4, pady=1) txtDisplay.insert(0,"0") # ====================================================================================================== # # Here is the code for NUMBER PAD in Calculator. numberpad = "789456123" i=0 btn = [] for j in range(2,5): for k in range(3): btn.append(Button(calc, width=6, height=2, bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,text=numberpad[i])) btn[i].grid(row=j, column= k, pady = 1) btn[i]["command"]=lambda x=numberpad[i]:added_value.numberEnter(x) i+=1 # ====================================================================================================== # # Here is the code for Button of Standard Calulator. btnClear = Button(calc, text=chr(67),width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold') ,bd=4, command=added_value.Clear_Entry).grid(row=1, column= 0, pady = 1) btnAllClear = Button(calc, text=chr(67)+chr(69),width=6, height=2,bg='black',fg='white', font=('Helvetica' ,20,'bold'),bd=4,command=added_value.All_Clear_Entry).grid(row=1, column= 1, pady = 1) btnsq = Button(calc, text="\u221A",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=added_value.squared).grid(row=1, column= 2, pady = 1) btnAdd = Button(calc, text="+",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.operation("add") ).grid(row=1, column= 3, pady = 1) btnSub = Button(calc, text="-",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.operation("sub") ).grid(row=2, column= 3, pady = 1) btnMul = Button(calc, text="x",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.operation("multi") ).grid(row=3, column= 3, pady = 1) btnDiv = Button(calc, text="/",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.operation("divide") ).grid(row=4, column= 3, pady = 1) btnZero = Button(calc, text="0",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.numberEnter(0) ).grid(row=5, column= 0, pady = 1) btnDot = Button(calc, text=".",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.numberEnter(".") ).grid(row=5, column= 1, pady = 1) btnPM = Button(calc, text=chr(177),width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=added_value.mathPM).grid(row=5, column= 2, pady = 1) btnEquals = Button(calc, text="=",width=6, height=2,bg='black',fg='white', font=('Helvetica',20,'bold'), bd=4,command=added_value.sum_of_total).grid(row=5, column= 3, pady = 1) # ===================================================================================================== # # Here is the code for Buttons of Scientific Calulator. # Here i make the rows for the Button of Scientific Calulator. # ROW 1 : btnPi = Button(calc, text="pi",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.pi).grid(row=1, column= 4, pady = 1) btnCos = Button(calc, text="Cos",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.cos).grid(row=1, column= 5, pady = 1) btntan = Button(calc, text="tan",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.tan).grid(row=1, column= 6, pady = 1) btnsin = Button(calc, text="sin",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.sin).grid(row=1, column= 7, pady = 1) # **************************************************************************************************** # # ROW 2 : btn2Pi = Button(calc, text="2pi",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.tau).grid(row=2, column= 4, pady = 1) btnCosh = Button(calc, text="Cosh",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.cosh).grid(row=2, column= 5, pady = 1) btntanh = Button(calc, text="tanh",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.tanh).grid(row=2, column= 6, pady = 1) btnsinh = Button(calc, text="sinh",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.sinh).grid(row=2, column= 7, pady = 1) #******************************************************************************************************# # ROW 3 : btnlog = Button(calc, text="log",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.log).grid(row=3, column= 4, pady = 1) btnExp = Button(calc, text="exp",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.exp).grid(row=3, column= 5, pady = 1) btnMod = Button(calc, text="Mod",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=lambda:added_value.operation("mod") ).grid(row=3, column= 6, pady = 1) btnE = Button(calc, text="e",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.e).grid(row=3, column= 7, pady = 1) #******************************************************************************************************# # ROW 4 : btnlog10 = Button(calc, text="log10",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold') ,bd=4,command=added_value.log10).grid(row=4, column= 4, pady = 1) btncos = Button(calc, text="log1p",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.log1p).grid(row=4, column= 5, pady = 1) btnexpm1 = Button(calc, text="expm1",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold') ,bd=4,command=added_value.expm1).grid(row=4, column= 6, pady = 1) btngamma = Button(calc, text="gamma",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold') ,bd=4,command=added_value.lgamma).grid(row=4, column= 7, pady = 1) #******************************************************************************************************# # ROW 5 : btnlog2 = Button(calc, text="log2",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.log2).grid(row=5, column= 4, pady = 1) btndeg = Button(calc, text="deg",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.degrees).grid(row=5, column= 5, pady = 1) btnacosh = Button(calc, text="acosh",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.acosh).grid(row=5, column= 6, pady = 1) btnasinh = Button(calc, text="asinh",width=6, height=2,bg='white',fg='black', font=('Helvetica',20,'bold'), bd=4,command=added_value.asinh).grid(row=5, column= 7, pady = 1) lblDisplay = Label(calc, text = "Scientific Calculator",font=('Helvetica',30,'bold'), bg='black',fg='white',justify=CENTER) lblDisplay.grid(row=0, column= 4,columnspan=4) # ====================================================================================================== # # Here are the fucntions for ManuBar. def iExit(): iExit = tkinter.messagebox.askyesno("Scientific Calculator","Do you want to exit ?") if iExit>0: root.destroy() return def Scientific(): root.resizable(width=False, height=False) root.geometry("944x568+0+0") def Standard(): root.resizable(width=False, height=False) root.geometry("480x568+0+0") filemenu = Menu(menubar, tearoff = 0) menubar.add_cascade(label = 'File', menu = filemenu) filemenu.add_command(label = "Standard", command = Standard) filemenu.add_command(label = "Scientific", command = Scientific) filemenu.add_separator() filemenu.add_command(label = "Exit", command = iExit) # ManuBar 2 : editmenu = Menu(menubar, tearoff = 0) menubar.add_cascade(label = 'Edit', menu = editmenu) editmenu.add_command(label = "Cut") editmenu.add_command(label = "Copy") editmenu.add_separator() editmenu.add_command(label = "Paste") root.config(menu=menubar) root.mainloop()
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |