from HelloWorld import * infinity = float('inf') class Node: def __init__(self, state, parent=None, action=None, path_cost=0): self.state = state self.parent = parent self.action = action self.path_cost = path_cost self.depth = 0 if parent: self.depth = parent.depth + 1 def __repr__(self): return "<Node {}>".format(self.state) def expand(self, problem): return [self.child_node(problem, action) for action in problem.actions(self.state)] def child_node(self, problem, action): next_state = problem.result(self.state, action) next_node = Node(next_state, self, action, problem.path_cost(self.path_cost, self.state, action, next_state)) return next_node def solution(self): return [node.action for node in self.path()[1:]] def path(self): node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back)) def __eq__(self, other): return isinstance(other, Node) and self.state == other.state def __hash__(self): return hash(self.state) class Graph: def __init__(self, graph_dict=None, directed=True): self.graph_dict = graph_dict or {} self.directed = directed if not directed: self.make_undirected() def make_undirected(self): for a in list(self.graph_dict.keys()): for (b, dist) in self.graph_dict[a].items(): self.connect1(b, a, dist) def connect(self, A, B, distance=1): self.connect1(A, B, distance) if not self.directed: self.connect1(B, A, distance) def connect1(self, A, B, distance): self.graph_dict.setdefault(A, {})[B] = distance def get(self, a, b=None): links = self.graph_dict.setdefault(a, {}) if b is None: return links else: return links.get(b) def nodes(self): s1 = set([k for k in self.graph_dict.keys()]) s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()]) nodes = s1.union(s2) return list(nodes) def best_first_graph_search(problem, f): f = memoize(f, 'f') node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = PriorityQueue('min', f) frontier.append(node) explored = set() while frontier: node = frontier.pop() print("popping node : " , node) if problem.goal_test(node.state): return node explored.add(node.state) for child in node.expand(problem): print("adding child :", child) if child.state not in explored and child not in frontier: frontier.append(child) elif child in frontier: incumbent = frontier[child] print(child , " in frontier. incumbent - ", incumbent) if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) return None def astar_search(problem, h=None): h = memoize(h or problem.h, 'h') return best_first_graph_search(problem, lambda n: n.path_cost + h(n)) class Problem(object): def __init__(self, initial, goal=None): self.initial = initial self.goal = goal def actions(self, state): raise NotImplementedError def result(self, state, action): raise NotImplementedError def goal_test(self, state): if isinstance(self.goal, list): return is_in(state, self.goal) else: return state == self.goal def path_cost(self, c, state1, action, state2): return c + 1 def value(self, state): raise NotImplementedError def UndirectedGraph(graph_dict=None): return Graph(graph_dict = graph_dict, directed=False) class GraphProblem(Problem): def __init__(self, initial, goal, graph): Problem.__init__(self, initial, goal) self.graph = graph def actions(self, A): return list(self.graph.get(A).keys()) def result(self, state, action): return action def path_cost(self, cost_so_far, A, action, B): return cost_so_far + (self.graph.get(A, B) or infinity) def find_min_edge(self): m = infinity for d in self.graph.graph_dict.values(): local_min = min(d.values()) m = min(m, local_min) return m def h(self, node): """h function is straight-line distance from a node's state to goal.""" locs = getattr(self.graph, 'locations', None) if locs: if type(node) is str: return int(distance(locs[node], locs[self.goal])) return int(distance(locs[node.state], locs[self.goal])) else: return infinity romania_map = UndirectedGraph(dict( Arad=dict(Zerind=75, Sibiu=140, Timisoara=118), Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211), Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138), Drobeta=dict(Mehadia=75), Eforie=dict(Hirsova=86), Fagaras=dict(Sibiu=99), Hirsova=dict(Urziceni=98), Iasi=dict(Vaslui=92, Neamt=87), Lugoj=dict(Timisoara=111, Mehadia=70), Oradea=dict(Zerind=71, Sibiu=151), Pitesti=dict(Rimnicu=97), Rimnicu=dict(Sibiu=80), Urziceni=dict(Vaslui=142))) romania_map.locations = dict( Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288), Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449), Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506), Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537), Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410), Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350), Vaslui=(509, 444), Zerind=(108, 531)) romania_problem = GraphProblem('Drobeta','Oradea', romania_map) resultnode = astar_search(romania_problem) print(resultnode.path()) print("Path Cost :" , resultnode.path_cost)
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |