from poodle import Object, schedule from typing import Set class Position(Object): def __str__(self): if not hasattr(self, "locname"): return "unknown" return self.locname class HasHeight(Object): height: int class HasPosition(Object): at: Position class Monkey(HasHeight, HasPosition): pass class PalmTree(HasHeight, HasPosition): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.height = 2 class Box(HasHeight, HasPosition): pass class Banana(HasHeight, HasPosition): owner: Monkey attached: PalmTree class World(Object): locations: Set[Position] p1 = Position() p1.locname = "Position A" p2 = Position() p2.locname = "Position B" p3 = Position() p3.locname = "Position C" w = World() w.locations.add(p1) w.locations.add(p2) w.locations.add(p3) m = Monkey() m.height = 0 # ground m.at = p1 box = Box() box.height = 2 box.at = p2 p = PalmTree() p.at = p3 b = Banana() b.attached = p def go(monkey: Monkey, where: Position): assert where in w.locations assert monkey.height < 1, "Monkey can only move while on the ground" monkey.at = where return f"Monkey moved to {where}" def push(monkey: Monkey, box: Box, where: Position): assert monkey.at == box.at assert where in w.locations assert monkey.height < 1, "Monkey can only move the box while on the ground" monkey.at = where box.at = where return f"Monkey moved box to {where}" def climb_up(monkey: Monkey, box: Box): assert monkey.at == box.at monkey.height += box.height return "Monkey climbs the box" def grasp(monkey: Monkey, banana: Banana): assert monkey.height == banana.height assert monkey.at == banana.at banana.owner = monkey return "Monkey takes the banana" def infer_owner_at(palmtree: PalmTree, banana: Banana): assert banana.attached == palmtree banana.at = palmtree.at return "Remembered that if banana is on palm tree, its location is where palm tree is" def infer_banana_height(palmtree: PalmTree, banana: Banana): assert banana.attached == palmtree banana.height = palmtree.height return "Remembered that if banana is on the tree, its height equals tree's height" print('\n'.join(x() for x in schedule( [go, push, climb_up, grasp, infer_banana_height, infer_owner_at], [w,p1,p2,p3,m,box,p,b], goal=lambda: b.owner == m)))
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |