from IPython import get_ipython get_ipython().magic(u'matplotlib inline') import matplotlib.pyplot as plt import matplotlib.mlab as mlab import numpy as np from scipy import signal # some program constants s_band_Hz = [5.0, 50.0] # where to look for the alpha peak NFFT = 512 # pitck the length of the fft fs_Hz = 250.0 # assumed sample rate for the EEG data f_lim_Hz = [0, 60] # frequency limits for plotting t_lim_sec = [] # default empty, it'll show all data channel_to_plot = 1 # counting the first channel as one # define which data to load pname = 'JST' fname = 'Coba1.txt' t_lim_sec = [0, 70] # load data into numpy array data = np.loadtxt(pname + fname, delimiter=',', skiprows=5) # parse the data data_indices = data[:, 0] # the first column is the packet index eeg_data_uV = data[:, channel_to_plot] # ignore the first channel (column 0), so channel 1 is column 1 # check data indices d_indices = data_indices[2:]-data_indices[1:-1] n_jump = np.count_nonzero((d_indices != 1) & (d_indices != 255)) print("Discontinuities inthe packet counter: " + str(n_jump)) # filter the data to remove DC hp_cutoff_Hz = 1.0 print ("highpass filtering at: " + str(hp_cutoff_Hz) + " Hz") b, a = signal.butter(2, hp_cutoff_Hz/(fs_Hz / 2.0), 'highpass') # define the filter f_eeg_data_uV = signal.lfilter(b, a, eeg_data_uV, 0) # apply along the zeroeth dimension # notch filter the data to remove 60 Hz and 120 Hz interference notch_freq_Hz = np.array([60.0, 120.0]) # these are the center frequencies for freq_Hz in np.nditer(notch_freq_Hz): # loop over each center freq bp_stop_Hz = freq_Hz + 3.0*np.array([-1, 1]) # set the stop band print ("notch filtering: " + str(bp_stop_Hz[0]) + "-" + str(bp_stop_Hz[1]) + " Hz") b, a = signal.butter(3, bp_stop_Hz/(fs_Hz / 2.0), 'bandstop') # create the filter f_eeg_data_uV = signal.lfilter(b, a, f_eeg_data_uV, 0) # apply along the zeroeth dimension bp_Hz = np.zeros(0) if (0): #filter to focus on alpha waves bp_Hz = np.array([7.0, 12.0]) print ("bandpass filtering to: " + str(bp_Hz[0]) + "-" + str(bp_Hz[1]) + " Hz") b, a = signal.butter(3, bp_Hz/(fs_Hz / 2.0),'bandpass') # create the filter f_eeg_data_uV = signal.lfilter(b, a, f_eeg_data_uV, 0) # apply along the zeroeth dimension # %% make time-domain plot fig = plt.figure(figsize=(10.0, 13.5)) # make new figure, set size in inches ax1 = plt.subplot(211) t_sec = np.array(range(0, f_eeg_data_uV.size)) / fs_Hz plt.plot(t_sec, f_eeg_data_uV) plt.ylim(-7500, 7500) plt.ylabel('EEG (uV)') plt.xlabel('Waktu (s)') plt.title(fname + " (Channel " + str(channel_to_plot) + ")") plt.grid() if (len(t_lim_sec) == 0): plt.xlim(t_sec[0], t_sec[-1]) else: plt.xlim(t_lim_sec) # add annotation for filtering if (bp_Hz.size > 0): ax1.text(0.025, 0.95, "BP = [" + str(bp_Hz[0]) + " " + str(bp_Hz[1]) + "] Hz", transform=ax1.transAxes, verticalalignment='top', horizontalalignment='left', backgroundcolor='w') # %% make spectrogram fig = plt.figure(figsize=(10.0, 10.5)) # make new figure, set size in inches ax = plt.subplot(212, sharex=ax1) FFTstep = NFFT/4 # do a new FFT every FFTstep data points overlap = NFFT - FFTstep # half-second steps #overlap = NFFT - int(0.25 * fs_Hz) spec_PSDperHz, freqs, t = mlab.specgram(np.squeeze(f_eeg_data_uV), NFFT=NFFT, window=mlab.window_hanning, Fs=fs_Hz, noverlap=overlap ) # returns PSD power per Hz spec_PSDperBin = spec_PSDperHz * fs_Hz / float(NFFT) #convert to "per bin" #del spec_PSDperHz # remove this variable so that I don't mistakenly use it plt.pcolor(t, freqs, 10*np.log10(spec_PSDperBin)) # dB re: 1 uV plt.clim(25-5+np.array([-40, 0])) #plt.ylim([0, fs_Hz/2.0]) # show the full frequency content of the signal plt.ylim(f_lim_Hz) plt.xlabel('Time (sec)') plt.ylabel('Frequency (Hz)') plt.title(fname + " (Channel " + str(channel_to_plot) + ")") if (len(t_lim_sec) == 0): plt.xlim(t_sec[0], t_sec[-1]) else: plt.xlim(t_lim_sec) # add annotation for FFT Parameters ax.text(0.025, 0.95, "NFFT = " + str(NFFT) + "\nfs = " + str(int(fs_Hz)) + " Hz", transform=ax.transAxes, verticalalignment='top', horizontalalignment='left', backgroundcolor='w') plt.tight_layout() #%% find spectra that are in our time span foo_spec = spec_PSDperBin if (t_lim_sec[2-1] != 0): foo_spec = foo_spec[:, ((t >= t_lim_sec[0]) & (t <= t_lim_sec[1]))] # add markers on the figure yl = ax.get_ylim() plt.plot(t_lim_sec[0]*np.array([1, 1]), yl, 'k--', linewidth=2); plt.plot(t_lim_sec[1]*np.array([1, 1]), yl, 'k--', linewidth=2); # get the mean spectra and convert from PSD to uVrms mean_spectra_PSDperBin = np.mean(foo_spec, 1); mean_spectra_uVrmsPerSqrtBin = np.sqrt(mean_spectra_PSDperBin) # plot the mean spectra fig = plt.figure(figsize=(10.0, 10.5)) # make new figure, set size in inches ax = plt.subplot(212, sharex=ax1) plt.plot(freqs, mean_spectra_uVrmsPerSqrtBin, '.-') plt.xlim(f_lim_Hz) plt.ylim([0, 200]) plt.xlabel('Frequency (Hz)') plt.ylabel('RMS Amplitude\n(uV per sqrt(Bin))') # add generic annotation about the FFT processing ax.text(1.0-0.025, 0.95, "NFFT = " + str(NFFT) + "\nfs = " + str(int(fs_Hz)) + " Hz", transform=ax.transAxes, verticalalignment='top', horizontalalignment='right', backgroundcolor='w') plt.tight_layout() #%% PSD foo_spec = spec_PSDperBin ind = ((t > t_lim_sec[0]) & (t < t_lim_sec[1])) #get the mean spectrum in that time spectrum_PSDperHz = np.mean(spec_PSDperHz[:,ind],1) #time is horizontal in the 2D array? #plot fig = plt.figure(figsize=(10.0, 10.5)) # make new figure, set size in inches ax = plt.subplot(212, sharex=ax1) plt.plot(freqs, 10*np.log10(spectrum_PSDperHz)) # dB re: 1 uV plt.xlim([0, fs_Hz/2.0]) # show the full frequency content of the signal plt.xlim(f_lim_Hz) #plt.xlim([0, 70]) plt.ylim([0.0, 50.0]) #plt.plot(38.0*np.array([1, 1]),ax.get_ylim(),'k--',linewidth=2) #plt.plot(40.0*np.array([1, 1]),ax.get_ylim(),'k--',linewidth=2) #plt.plot(42.0*np.array([1, 1]),ax.get_ylim(),'k--',linewidth=2) plt.xlabel('Frequency (Hz)') plt.ylabel('PSD') plt.title(fname + " (Channel " + str(channel_to_plot) + ")") plt.grid() ax.text(1-0.025, 0.95, "NFFT = " + str(NFFT) + "\nfs = " + str(int(fs_Hz)) + " Hz", transform=ax.transAxes, verticalalignment='top', horizontalalignment='right', backgroundcolor='w') plt.tight_layout() # %% Plot the amplitude of alpha vs time #reduce size full_spec_PSDperBin = spec_PSDperBin full_t_spec = t # compute alpha vs time bool_inds = (freqs > s_band_Hz[0]) & (freqs < s_band_Hz[1]) alpha_max_uVperSqrtBin = np.sqrt(np.amax(full_spec_PSDperBin[bool_inds,:],0)) alpha_sum_uVrms = np.sqrt(np.sum(full_spec_PSDperBin[bool_inds, :],0)) # make figure window fig = plt.figure(figsize=(10.0, 15.5)) # make new figure, set size in inches # make spectrogram (again) # make time-domain plot of alpha amplitude ax = plt.subplot(312, sharex=ax1) #plt.plot(full_t_spec, alpha_sum_uVrms, '.-', # full_t_spec, alpha_max_uVperSqrtBin, '.-') plt.plot(full_t_spec, alpha_max_uVperSqrtBin, '.-') plt.ylim([0, 150]) plt.xlim([t_sec[0], t_sec[-1]]) if (t_lim_sec[2-1] != 0): plt.xlim(t_lim_sec) plt.xlabel('Waktu (s)') plt.ylabel('Amplitud (uVrms)') plt.axhline(y=70.0, color='r', linestyle='--') plt.text(30.0, 70.0, 'Threshold', fontsize=15, va='center', ha='center', backgroundcolor='w') #plt.plot(38.0*np.array([1, 1]),ax.get_lim(),'k--',linewidth=2) # plt.legend(('Sum In-Band', 'Max In-Band'), loc=2, fontsize='medium') plt.legend(['Max In-Band'], loc=2, fontsize='medium') plt.tight_layout() # In[32]: spec_PSDperBin[1,1]
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |