import numpy as np import pickle import cv2 from os import listdir from sklearn.preprocessing import LabelBinarizer from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation, Flatten, Dropout, Dense from keras import backend as K from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import Adam from keras.preprocessing import image from keras.preprocessing.image import img_to_array from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import tensorflow EPOCHS = 25 INIT_LR = 1e-3 BS = 32 default_image_size = tuple((256, 256)) image_size = 0 directory_root = '../input/plantvillage/' width=256 height=256 depth=3 def convert_image_to_array(image_dir): try: image = cv2.imread(image_dir) if image is not None : image = cv2.resize(image, default_image_size) return img_to_array(image) else : return np.array([]) except Exception as e: print(f"Error : {e}") return None image_list, label_list = [], [] try: print("[INFO] Loading images ...") root_dir = listdir(directory_root) for directory in root_dir : # remove .DS_Store from list if directory == ".DS_Store" : root_dir.remove(directory) for plant_folder in root_dir : plant_disease_folder_list = listdir(f"{directory_root}/{plant_folder}") for disease_folder in plant_disease_folder_list : # remove .DS_Store from list if disease_folder == ".DS_Store" : plant_disease_folder_list.remove(disease_folder) for plant_disease_folder in plant_disease_folder_list: print(f"[INFO] Processing {plant_disease_folder} ...") plant_disease_image_list = listdir(f"{directory_root}/{plant_folder}/{plant_disease_folder}/") for single_plant_disease_image in plant_disease_image_list : if single_plant_disease_image == ".DS_Store" : plant_disease_image_list.remove(single_plant_disease_image) for image in plant_disease_image_list[:200]: image_directory = f"{directory_root}/{plant_folder}/{plant_disease_folder}/{image}" if image_directory.endswith(".jpg") == True or image_directory.endswith(".JPG") == True: image_list.append(convert_image_to_array(image_directory)) label_list.append(plant_disease_folder) print("[INFO] Image loading completed") except Exception as e: print(f"Error : {e}") image_size = len(image_list) label_binarizer = LabelBinarizer() image_labels = label_binarizer.fit_transform(label_list) pickle.dump(label_binarizer,open('label_transform.pkl', 'wb')) n_classes = len(label_binarizer.classes_) print(label_binarizer.classes_) np_image_list = np.array(image_list, dtype=np.float16) / 225.0 print("[INFO] Spliting data to train, test") x_train, x_test, y_train, y_test = train_test_split(np_image_list, image_labels, test_size=0.2, random_state = 42) aug = ImageDataGenerator( rotation_range=25, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,horizontal_flip=True, fill_mode="nearest") model = Sequential() inputShape = (height, width, depth) chanDim = -1 if K.image_data_format() == "channels_first": inputShape = (depth, height, width) chanDim = 1 model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape)) model.add(Activation("relu")) model.add(BatchNormalization(axis=chanDim)) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(axis=chanDim)) model.add(Conv2D(64, (3, 3), padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(axis=chanDim)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128, (3, 3), padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(axis=chanDim)) model.add(Conv2D(128, (3, 3), padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(axis=chanDim)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1024)) model.add(Activation("relu")) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(n_classes)) model.add(Activation("softmax")) opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) # distribution model.compile(loss="binary_crossentropy", optimizer=opt,metrics=["accuracy"]) # train the network print("[INFO] training network...") history = model.fit_generator( aug.flow(x_train, y_train, batch_size=BS), validation_data=(x_test, y_test), steps_per_epoch=len(x_train) // BS, epochs=EPOCHS, verbose=1 ) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) #Train and validation accuracy plt.plot(epochs, acc, 'b', label='Training accurarcy') plt.plot(epochs, val_acc, 'r', label='Validation accurarcy') plt.title('Training and Validation accurarcy') plt.legend() plt.figure() #Train and validation loss plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and Validation loss') plt.legend() plt.show() print("[INFO] Calculating model accuracy") scores = model.evaluate(x_test, y_test) print(f"Test Accuracy: {scores[1]*100}") # save the model to disk print("[INFO] Saving model...") pickle.dump(model,open('cnn_model.pkl', 'wb'))
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |