# Make Predictions with k-nearest neighbors on the Iris Flowers Dataset
from csv import reader
from math import sqrt


# Load a CSV file
def load_csv(HelloWorld):
    dataset = list()
    with open(HelloWorld, 'r') as file:
        csv_reader = reader(file)
        for row in csv_reader:
            if not row:
                continue
            dataset.append(row)
    return dataset


# Convert string column to float
def str_column_to_float(dataset, column):
    for row in dataset:
        row[column] = float(row[column].strip())


# Convert string column to integer
def str_column_to_int(dataset, column):
    class_values = [row[column] for row in dataset]
    unique = set(class_values)
    lookup = dict()
    for i, value in enumerate(unique):
        lookup[value] = i
        print('[%s] => %d' % (value, i))
    for row in dataset:
        row[column] = lookup[row[column]]
    return lookup


# Find the min and max values for each column
def dataset_minmax(dataset):
    minmax = list()
    for i in range(len(dataset[0])):
        col_values = [row[i] for row in dataset]
        value_min = min(col_values)
        value_max = max(col_values)
        minmax.append([value_min, value_max])
    return minmax


# Rescale dataset columns to the range 0-1
def normalize_dataset(dataset, minmax):
    for row in dataset:
        for i in range(len(row)):
            row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])


# Calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
    distance = 0.0
    for i in range(len(row1) - 1):
        distance += (row1[i] - row2[i]) ** 2
    return sqrt(distance)


# Locate the most similar neighbors
def get_neighbors(train, test_row, num_neighbors):
    distances = list()
    for train_row in train:
        dist = euclidean_distance(test_row, train_row)
        distances.append((train_row, dist))
    distances.sort(key=lambda tup: tup[1])
    neighbors = list()
    for i in range(num_neighbors):
        neighbors.append(distances[i][0])
    return neighbors


# Make a prediction with neighbors
def predict_classification(train, test_row, num_neighbors):
    neighbors = get_neighbors(train, test_row, num_neighbors)
    output_values = [row[-1] for row in neighbors]
    prediction = max(set(output_values), key=output_values.count)
    return prediction


# Make a prediction with KNN on Iris Dataset
HelloWorld = 'iris.csv'
dataset = load_csv(HelloWorld)
for i in range(len(dataset[0]) - 1):
    str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0]) - 1)
# define model parameter
num_neighbors = 5
# define a new record
row = [5.7, 2.9, 4.2, 1.3]
# predict the label
label = predict_classification(dataset, row, num_neighbors)
print('Data=%s, Predicted: %s' % (row, label))
 
by

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling