import queue class BinaryTreeNode(): def __init__(self,data): self.data=data self.left=None self.right=None '''btn1=BinaryTreeNode(1) btn2=BinaryTreeNode(2) btn3=BinaryTreeNode(3) btn4=BinaryTreeNode(4) btn5=BinaryTreeNode(5) btn6=BinaryTreeNode(6) btn1.left=btn2 btn1.right=btn3 btn2.left=btn4 btn2.right=btn5 btn3.right=btn6''' def PrintTreePreorderTraversal(root): if root == None: return print(root.data,end=" ") PrintTreePreorderTraversal(root.left) PrintTreePreorderTraversal(root.right) def largestdata(root): if root == None: return -1 leftlargest=largestdata(root.left) rightlargest=largestdata(root.right) return max(leftlargest,rightlargest,root.data) def countNodesGreaterThanX(root, x): # Given a Binary Tree and an integer x, find and return the count of nodes # which are having data greater than x. ############################# # PLEASE ADD YOUR CODE HERE # ############################# if root is None: return 0 leftNode=countNodesGreaterThanX(root.left,x) rightNode=countNodesGreaterThanX(root.right,x) if root.data>x: return 1+leftNode+rightNode return leftNode+rightNode def numnodes(root): if root == None: return 0 leftcount=numnodes(root.left) rightcount=numnodes(root.right) return 1+leftcount+rightcount def sumnodes(root): if root==None: return 0 leftsum=sumnodes(root.left) rightsum=sumnodes(root.right) return leftsum+rightsum+root.data def heightofthetree(root): if root == None: return 0 leftheight=heightofthetree(root.left) rightheight=heightofthetree(root.right) height=max(leftheight,rightheight) return 1+height def numleafnodes(root): if root == None: return 0 if root.left is None and root.right is None: return 1 leftleafnodes=numleafnodes(root.left) rightleafnodes=numleafnodes(root.right) return leftleafnodes+rightleafnodes def printdepthk(root,k): if root == None: return if k==0: print(root.data) return printdepthk(root.left,k-1) printdepthk(root.right,k-1) def printdepthkv2(root,k, d = 0): if root == None: return if k == d: print(root.data) return printdepthkv2(root.left,k,d+1) printdepthkv2(root.right,k,d+1) def changetree(root,k=0,d=0): if root == None: return changetree(root.left,k+1,d+1) changetree(root.right,k+1,d+1) if k ==d: root.data=d return def nodepresent(root,x): if root == None: return False if root.data == x: return True res1=nodepresent(root.left,x) if res1: return True res2=nodepresent(root.right,x) return res2 def ifNodeExists(node, key): if (node == None): return False if (node.data == key): return True """ then recur on left subtree """ res1 = ifNodeExists(node.left, key) # node found, no need to look further if res1: return True """ node is not found in left, so recur on right subtree """ res2 = ifNodeExists(node.right, key) return res2 def checksibling(root): if root == None: return 0 if root.left==None and root.right==None: return -1 if root.left!=None or root.right!=None: if root.left ==None: print(root.right.data,end=" ") if root.right ==None: print(root.left.data,end=" ") checksibling(root.left) checksibling(root.right) def removeleafs(root): if root == None: return None if root.left is None and root.right is None: return None root.left=removeleafs(root.left) root.right=removeleafs(root.right) return root def mirrortree(root): if root == None: return mirrortree(root.left) mirrortree(root.right) temp=root.left root.left=root.right root.right=temp def isbalanced(root): if root == None: return True lh=heightofthetree(root.left) rh=heightofthetree(root.right) if lh-rh > 1 or rh - lh > 1: return False leftbalance=isbalanced(root.left) rightbalance=isbalanced(root.right) if leftbalance and rightbalance: return True else: return False def heightanddiameter(root): if root == None: return 0,0 lh,ld=heightanddiameter(root.left) rh,rd=heightanddiameter(root.right) h=1+max(lh,rh) a=lh+rh d=1+max(a,ld,rd) return h,d def diameterofatree(root): heighting,diameter=heightanddiameter(root) return diameter def buildtreefromprein(pre,inorder): if len(pre)==0: return None rootdata=pre[0] root=BinaryTreeNode(rootdata) rootindexininorder=-1 for i in range(len(inorder)): if inorder[i]== rootdata: rootindexininorder=i break if rootindexininorder==-1: return None leftinorder=inorder[0:rootindexininorder] rightinorder=inorder[rootindexininorder+1:] lenleftsubtree=len(leftinorder) leftpreorder=pre[1:lenleftsubtree+1] rightpreorder=pre[lenleftsubtree+1:] leftchild=buildtreefromprein(leftpreorder,leftinorder) rightchild=buildtreefromprein(rightpreorder,rightinorder) root.left=leftchild root.right=rightchild return root def buildtreefrompostin(post,inorder): if len(post)==0: return None rootdata=post[-1] root=BinaryTreeNode(rootdata) rootindexininorder=-1 for i in range(len(inorder)): if inorder[i]== rootdata: rootindexininorder=i break if rootindexininorder==-1: return None leftinorder=inorder[0:rootindexininorder] rightinorder=inorder[rootindexininorder+1:] lenleftsubtree=len(leftinorder) leftpostorder=post[0:lenleftsubtree] rightpostorder=post[lenleftsubtree:len(post)-1] leftchild=buildtreefrompostin(leftpostorder,leftinorder) rightchild=buildtreefrompostin(rightpostorder,rightinorder) root.left=leftchild root.right=rightchild return root def duplicateeverynode(root): if root == None: return None q=queue.Queue() print(root.data) print(root.left.data) q.put(root) while not q.empty(): temp1=root.left temp2=root.data temp3=root.right currnode=q.get() newleft=BinaryTreeNode(currnode) newleft.left=temp2 newleft1=BinaryTreeNode(newleft.left) if temp1 != None: newleft1.left=temp1 q.put(temp1) if temp3 !=None: q.put(temp3) def printtreelevelwisedetailed(root): if root == None: return q=queue.Queue() q.put(root) while not q.empty(): currnode=q.get() print(currnode.data,end=":") if currnode.left != None: print('L:',end="") print(currnode.left.data,end=",") if currnode.left is None: print('L:-1',end=",") if currnode.right != None: print('R:',end="") print(currnode.right.data,end="") if currnode.right is None: print('R:-1',end="") print() if currnode.left is not None: q.put(currnode.left) if currnode.right is not None: q.put(currnode.right) def treeinputlevelwise(): q=queue.Queue() print('enter root') rootdata=int(input()) if rootdata == -1: return None root=BinaryTreeNode(rootdata) q.put(root) while not q.empty(): currnode=q.get() print('Enter leftchid data',currnode.data) leftdata=int(input()) if leftdata!=-1: leftchild=BinaryTreeNode(leftdata) currnode.left=leftchild q.put(leftchild) print('Enter rightchid data',currnode.data) rightdata=int(input()) if rightdata!=-1: rightchild=BinaryTreeNode(rightdata) currnode.right=rightchild q.put(rightchild) return root def printtree(root): if root == None: return print(root.data,end=":") if root.left != None: print('L',root.left.data,end=" ") if root.right!=None: print('R',root.right.data,end="") print() printtree(root.left) printtree(root.right) def TreeInput(): rootdata=int(input()) if rootdata==-1: return None root=BinaryTreeNode(rootdata) lefttree=TreeInput() righttree=TreeInput() root.left=lefttree root.right=righttree return root root=treeinputlevelwise() printtreelevelwisedetailed(root) duplicateeverynode(root) #post=[4,5,2,6,7,3,1] #inorder=[4,2,5,1,6,3,7] #root=buildtreefrompostin(post,inorder) printtreelevelwisedetailed(root) #root=TreeInput() #print(diameterofatree(root)) #print(isbalanced(root)) #printtree(root) #mirrortree(root) #root=removeleafs(root) #checksibling(root) #print(nodepresent(root,5)) #changetree(root) #printdepthk(root,2) #printdepthk(root,2) #print(numleafnodes(root)) #print(heightofthetree(root)) #print(countNodesGreaterThanX(root,9)) #print(largestdata(root)) #PrintTreePreorderTraversal(root) #printtree(root) #print(numnodes(root)) #print(sumnodes(root))
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |