# 
#   This program adds, subtracts, multiplies, divides two fractions and simplifies the result.
#   Author: Arvin Javaheripur
#
#   Copyright 2021  Arvin Javaheripur
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

import math

def is_integer(num):
    result = False
    try:
        if (isinstance(num, int)):
            result = True
        elif (isinstance(num, float)):
            result = False
        elif (isinstance(num, str)):
            int(num)
            result = True
    except:
        result = False
    return result

def lcm(x, y):
    x = abs(x)
    y = abs(y)
    temp = 0
    if x > y:
        temp = x
        x = y
        y = temp
    result = x
    while (result % y) != 0:
        result += x
    return int(result)

# main
is_valid = False
inp_fraction1 = ""
while not is_valid:
    inp_fraction1 = input("Enter the first fraction (\u00B1x1/y1): ")
    inp_fraction1_splitted = inp_fraction1.split("/", 1)
    if len(inp_fraction1_splitted) == 1:
        inp_fraction1_splitted.append("1")
    if is_integer(inp_fraction1_splitted[0]) and is_integer(inp_fraction1_splitted[1]) and (int(inp_fraction1_splitted[1]) != 0):
            is_valid = True
    else:
        print("Invalid fraction!")

numerator1 = int(inp_fraction1_splitted[0])
denominator1 = int(inp_fraction1_splitted[1])
if denominator1 < 0:
    numerator1 *= -1
    denominator1 *= -1
    print(f"{inp_fraction1} changed to {numerator1}/{denominator1}")

is_valid = False
inp_fraction2 = ""
while not is_valid:
    inp_fraction2 = input("Enter the second fraction (\u00B1x2/y2): ")
    inp_fraction2_splitted = inp_fraction2.split("/", 1)
    if len(inp_fraction2_splitted) == 1:
        inp_fraction2_splitted.append("1")
    if is_integer(inp_fraction2_splitted[0]) and is_integer(inp_fraction2_splitted[1]) and (int(inp_fraction2_splitted[1]) != 0):
        is_valid = True
    else:
        print("Invalid fraction!")

numerator2 = int(inp_fraction2_splitted[0])
denominator2 = int(inp_fraction2_splitted[1])
if denominator2 < 0:
    numerator2 *= -1
    denominator2 *= -1
    print(f"{inp_fraction2} changed to {numerator2}/{denominator2}")

lcm = lcm(denominator1, denominator2)
result_numerator_addition = int(lcm/denominator1*numerator1 + lcm/denominator2*numerator2)
result_denominator_addition = lcm
result_numerator_subtraction = int(lcm/denominator1*numerator1 - lcm/denominator2*numerator2)
result_denuminator_subtraction = lcm
result_numerator_multiplication = int(numerator1*numerator2)
result_denominator_multiplication = denominator1*denominator2
result_numerator_division = int(numerator1*denominator2)
result_denominator_division = denominator1*numerator2
if result_denominator_division < 0:
    result_numerator_division *= -1
    result_denominator_division *= -1
final_result_addition = f"{numerator1}/{denominator1} + {numerator2}/{denominator2} = {result_numerator_addition}/{result_denominator_addition}"
final_result_subtraction = f"{numerator1}/{denominator1} - {numerator2}/{denominator2} = {result_numerator_subtraction}/{result_denuminator_subtraction}"
final_result_multiplication = f"{numerator1}/{denominator1} * {numerator2}/{denominator2} = {result_numerator_multiplication}/{result_denominator_multiplication}"
if result_denominator_division == 0:
    final_result_division = f"{numerator1}/{denominator1} \u00F7 {numerator2}/{denominator2} = \u221E"
else:
    final_result_division = f"{numerator1}/{denominator1} \u00F7 {numerator2}/{denominator2} = {result_numerator_division}/{result_denominator_division}"

prime_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
simplified_numerator1 = result_numerator_addition
simplified_denominator1 = result_denominator_addition

i = 0
while i < len(prime_numbers):
    if (simplified_numerator1 % prime_numbers[i]) == 0 and (simplified_denominator1 % prime_numbers[i]) == 0:
        simplified_numerator1 //= prime_numbers[i]
        simplified_denominator1 //= prime_numbers[i]
    else:
        i += 1

simplified_numerator2 = result_numerator_subtraction
simplified_denominator2 = result_denuminator_subtraction

i = 0
while i < len(prime_numbers):
    if (simplified_numerator2 % prime_numbers[i]) == 0 and (simplified_denominator2 % prime_numbers[i]) == 0:
        simplified_numerator2 //= prime_numbers[i]
        simplified_denominator2 //= prime_numbers[i]
    else:
        i += 1

simplified_numerator3 = result_numerator_multiplication
simplified_denominator3 = result_denominator_multiplication

i = 0
while i < len(prime_numbers):
    if (simplified_numerator3 % prime_numbers[i]) == 0 and (simplified_denominator3 % prime_numbers[i]) == 0:
        simplified_numerator3 //= prime_numbers[i]
        simplified_denominator3 //= prime_numbers[i]
    else:
        i += 1

simplified_numerator4 = result_numerator_division
simplified_denominator4 = result_denominator_division

if result_denominator_division != 0:
    i = 0
    while i < len(prime_numbers):
        if (simplified_numerator4 % prime_numbers[i]) == 0 and (simplified_denominator4 % prime_numbers[i]) == 0:
            simplified_numerator4 //= prime_numbers[i]
            simplified_denominator4 //= prime_numbers[i]
        else:
            i += 1


final_result1 = final_result_addition
final_result2 = final_result_subtraction
final_result3 = final_result_multiplication
final_result4 = final_result_division

# simplification
result1_is_whole = False
if simplified_denominator1 == 1:
    simplified_result1 = f"{int(simplified_numerator1)}"
    result1_is_whole = True
elif (simplified_numerator1 % simplified_denominator2) == 0:
    simplified_result1 = f"{int(simplified_numerator1 / simplified_denominator1)}"
    result1_is_whole = True
else:
    simplified_result1 = f"{int(simplified_numerator1)}/{int(simplified_denominator1)}"

if simplified_denominator1 != result_denominator_addition:
    final_result1 += " = " + simplified_result1


result2_is_whole = False
if simplified_denominator2 == 1:
    simplified_result2 = f"{int(simplified_numerator2)}"
    result2_is_whole = True
elif (simplified_numerator2 % simplified_denominator2) == 0:
    simplified_result2 = f"{int(simplified_numerator2 / simplified_denominator2)}"
    result2_is_whole = True
else:
    simplified_result2 = f"{int(simplified_numerator2)}/{int(simplified_denominator2)}"

if simplified_denominator2 != result_denuminator_subtraction:
    final_result2 += " = " + simplified_result2


result3_is_whole = False
if simplified_denominator3 == 1:
    simplified_result3 = f"{int(simplified_numerator3)}"
    result3_is_whole = True
elif (simplified_numerator3 % simplified_denominator3) == 0:
    simplified_result3 = f"{int(simplified_numerator3 / simplified_denominator3)}"
    result3_is_whole = True
else:
    simplified_result3 = f"{int(simplified_numerator3)}/{int(simplified_denominator3)}"

if simplified_denominator3 != result_denominator_multiplication:
    final_result3 += " = " + simplified_result3


result4_is_whole = False
if simplified_denominator4 == 1:
    simplified_result4 = f"{int(simplified_numerator4)}"
    result4_is_whole = True
elif simplified_denominator4 == 0:
    simplified_result4 = ""
    result4_is_whole = True
elif (simplified_numerator4 % simplified_denominator4) == 0:
    simplified_result4 = f"{int(simplified_numerator4 / simplified_denominator4)}"
    result4_is_whole = True
else:
    simplified_result4 = f"{int(simplified_numerator4)}/{int(simplified_denominator4)}"

if simplified_denominator4 != result_denominator_division:
    final_result4 += " = " + simplified_result4

# convert to mixed number
if not result1_is_whole and simplified_numerator1 > simplified_denominator1:
    mixed_num_fraction1 = f"{simplified_numerator1 % simplified_denominator1}/{simplified_denominator1}"
    mixed_num1 = f"{simplified_numerator1 // simplified_denominator1} {mixed_num_fraction1}"
    final_result1 += f" = {mixed_num1}"

if not result2_is_whole and simplified_numerator2 > simplified_denominator2:
    mixed_num_fraction2 = f"{simplified_numerator2 % simplified_denominator2}/{simplified_denominator2}"
    mixed_num2 = f"{simplified_numerator2 // simplified_denominator2} {mixed_num_fraction2}"
    final_result2 += f" = {mixed_num2}"

if not result3_is_whole and simplified_numerator3 > simplified_denominator3:
    mixed_num_fraction3 = f"{simplified_numerator3 % simplified_denominator3}/{simplified_denominator3}"
    mixed_num3 = f"{simplified_numerator3 // simplified_denominator3} {mixed_num_fraction3}"
    final_result3 += f" = {mixed_num3}"

if not result4_is_whole and simplified_numerator4 > simplified_denominator4:
    mixed_num_fraction4 = f"{simplified_numerator4 % simplified_denominator4}/{simplified_denominator4}"
    mixed_num4 = f"{simplified_numerator4 // simplified_denominator4} {mixed_num_fraction4}"
    final_result4 += f" = {mixed_num4}"

print(final_result1)
print(final_result2)
print(final_result3)
print(final_result4)


 

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling