import os import cv2 import numpy as np from keras.preprocessing import image import warnings warnings.filterwarnings("ignore") from keras.preprocessing.image import load_img, img_to_array from keras.models import load_model import matplotlib.pyplot as plt import numpy as np # load model model = load_model("best_model.h5") face_haar_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret, test_img = cap.read() # captures frame and returns boolean value and captured image if not ret: continue gray_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB) faces_detected = face_haar_cascade.detectMultiScale(gray_img, 1.32, 5) for (x, y, w, h) in faces_detected: cv2.rectangle(test_img, (x, y), (x + w, y + h), (255, 0, 0), thickness=7) roi_gray = gray_img[y:y + w, x:x + h] # cropping region of interest i.e. face area from image roi_gray = cv2.resize(roi_gray, (224, 224)) img_pixels = image.img_to_array(roi_gray) img_pixels = np.expand_dims(img_pixels, axis=0) img_pixels /= 255 predictions = model.predict(img_pixels) # find max indexed array max_index = np.argmax(predictions[0]) emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral') predicted_emotion = emotions[max_index] cv2.putText(test_img, predicted_emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) resized_img = cv2.resize(test_img, (1000, 700)) cv2.imshow('Facial emotion analysis ', resized_img) if cv2.waitKey(10) == ord('q'): # wait until 'q' key is pressed break cap.release() cv2.destroyAllWindows