#!/usr/bin/env python3 class Graph: #constructor def __init__(self,num_nodes): self.num_nodes = num_nodes; self.data = [[] for _ in range(num_nodes)] self.weight = [[] for _ in range(num_nodes)] self.lsdb = []# for _ in range(num_nodes)] #9:55 #self.weight = [[] for _ in range(num_nodes)] # for n1,n2 in edges:#pair # self.data[n1].append(n2) # self.data[n2].append(n1) def add_edges(self,n1,n2,weight): if n2 in self.data[n1]: index1 = self.data[n1].index(n2) temp_weight = self.weight[n1][index1] self.weight[n1][index1] = weight test = f"{n1},{n2},{temp_weight}" test2 = f"{n1},{n2},{weight}" index12 = self.lsdb.index(test) self.lsdb[index12] = test2 index2 = self.data[n2].index(n1) self.weight[n2][index2] = weight else: self.data[n1].append(n2) test = f"{n1},{n2},{weight}" self.lsdb.append(test) self.weight[n1].append(weight) self.data[n2].append(n1) #self.lsdb[n2].append(test) self.weight[n2].append(weight) def remove_edges(self,n1,n2): index1 = self.data[n1].index(n2) weight1 = self.weight[n1][index1] test = f"{n1},{n2},{weight1}" self.data[n1].remove(n2) self.lsdb.remove(test) self.weight[n1].remove(weight1) index2 = self.data[n2].index(n1) weight2 = self.weight[n2][index2] self.data[n2].remove(n1) self.weight[n2].remove(weight2) def bfs(self,src): visited = [False] * len(self.data) queue = [] visited[src] = True queue.append(src) i = 0 while i < len(queue): for v in self.data[queue[i]]: if not visited[v]: visited[v] = True queue.append(v) i+=1 queue.remove(src) return queue def lsdb_update(self): num = [] for i in self.lsdb: temp = i.split(",") n = int(temp[0]) + int(temp[1]) num.append(n) #bubble sort for i in range (len(num)): for j in range(0,len(num) - i - 1): if num[j] > num[j+1]: t = num[j] p = self.lsdb[j] num[j] = num[j+1] self.lsdb[j] = self.lsdb[j+1] num[j+1] = t self.lsdb[j+1] = p #print("Updated: ",self.lsdb) def get_neighbour(self,x): size = len(self.data[x]) st = [] for i in range(size): #return (x,self.data[x][i],self.weight[x][i]) st.append(f"{self.data[x][i]},{self.weight[x][i]}") return st def print_lsdb(self): for word in self.lsdb: print(word) def __repr__(self) : return "\n".join(["{} {}".format(n,neighbors) for n,neighbors in enumerate(self.data)]) def __str__(self): return repr(self) #GLobal Functions def num_con(arr): num = [] i = 0 for no in arr: num.append(i) i=i+1 return num def str_con(string,arr): temp = string.split(",") ret_str=f"{arr[int(temp[0])]},{arr[int(temp[1])]},{temp[2]}" return ret_str def str_con_n(string,arr): temp = string.split(",") ret_str=f"{arr[int(temp[0])]},{temp[1]}" return ret_str def n_update(arr): num =[] for i in arr: temp = i.split(",") n = int(temp[0]) num.append(n) for i in range(len(num)): for j in range(0,len(num) - i - 1): if num[j] > num[j+1]: t = num[j] p = arr[j] num[j]=num[j+1] arr[j]=arr[j+1] num[j+1] = t arr[j+1] = p return arr #---------------------------------------------------------------------------------------------- def update_distances(graph, current, distance, parent=None): """Update the distances of the current node's neighbors""" neighbors = graph.data[current] weights = graph.weight[current] nodel = [] for i, node in enumerate(neighbors): weight = weights[i] if distance[current] + weight < distance[node]: distance[node] = distance[current] + weight nodel.append[node] if parent: parent[node] = current return nodel def pick_next_node(distance, visited): """Pick the next univisited node at the smallest distance""" min_distance = float('inf') min_node = None for node in range(len(distance)): if not visited[node] and distance[node] < min_distance: min_node = node min_distance = distance[node] return min_node def shortest_path(graph, source, dest): """Find the length of the shortest path between source and destination""" #all node unvisted visited = [False] * len(graph.data) # distance = [float('inf')] * len(graph.data) parent = [None] * len(graph.data) queue = [] idx = 0 test = [] queue.append(source) distance[source] = 0 visited[source] = True j = 0 nodel = [] while idx < len(queue) and not visited[dest]: current = queue[idx] #update_distances(graph, current, distance, parent) #---------------Use Update distance function from above----------- neighbors = graph.data[current] weights = graph.weight[current] for i, node in enumerate(neighbors): weight = weights[i] if distance[current] + weight < distance[node]: distance[node] = distance[current] + weight nodel.append(node) if parent: parent[node] = current #------------------- test.append(current) next_node = pick_next_node(distance, visited) if next_node is not None: visited[next_node] = True if j == 0: first_node = next_node queue.append(next_node) idx += 1 if len(nodel) > 1: first_node = nodel[1] if len(queue) == 1: first_node = queue[0] print(f"{dest} is {nodel}") return f"{dest},{first_node},{distance[dest]}",distance #----------------------------------------------------------- def bubble_sort(arr): num = [] for i in arr: temp = i.split(",") n = int(temp[0]) + int(temp[1]) num.append(n) # bubble sort for i in range(len(num)): for j in range(0, len(num) - i - 1): if num[j] > num[j+1]: t = num[j] p = arr[j] num[j] = num[j+1] arr[j] = arr[j+1] num[j+1] = t arr[j+1] = p # visited = [False] * len(graph.data) # dist = [float('inf')] * len(graph.data) # queue = [] # dist[src] = 0 # queue.append(src) # i = 0 # j = 0 # while i < len(queue) and not visited[target] and not visited[target]: # current = queue[i] # visited[current] = True # i = i + 1 # update_distances(graph,current,dist) # #find the first univisted node with the smallest distance # next_node = pick_next_node(dist,visited) # if j == 0: # first_node = next_node # j = j+1 # if next_node: # queue.append(next_node) # return dist[target] if __name__ == '__main__': #all the inputs word = [] stop = 'END' link = 'LINKSTATE' while True: val = input() if val == stop: break word.append(val) node = [] # array of nodes new_word = word.copy() step = 'LINKSTATE' i = 0 while True: temp = word[i] if temp == step or i > len(word): break node.append(temp) new_word.remove(temp) i = i + 1 #print('output', node) new_word.remove('LINKSTATE') if "UPDATE" in new_word: new_word.remove('UPDATE') num_arr = num_con(node) # 0 1 2 3 num_nodes = len(node) g = Graph(num_nodes) for i in new_word: my_list = i.split(" ")#x z 7 x,y if not my_list[2] == "-1": weight = int(my_list[2]) n1 = node.index(my_list[0]) n2 = node.index(my_list[1]) g.add_edges(n1, n2, weight) g.lsdb_update() else: n1 = node.index(my_list[0]) n2 = node.index(my_list[1]) g.remove_edges(n1,n2) g.lsdb_update() checker = len(my_list) if checker == 4: li = [] t = my_list[3] my_list2 = t.split(",") len(my_list2) for i in my_list2: if i in node: p = node.index(i) print(f"{i} Neighbour Table:") st = g.get_neighbour(p) new_st = n_update(st) for j in new_st: print(str_con_n(j,node)) print("") print(f'{i} LSDB') if g.data[p]: #IF ELEMENT EXIST t = "\n".join(["{}".format(n) for n in g.lsdb]) s = t.split("\n") if len(s) > 1: for j in s: print(str_con(j,node)) else: print(str_con(t,node)) print("") print(f"{i} Routing Table") r_st = [] for i in g.data[p]: a,b = shortest_path(g,p,i) r_st.append(a) bubble_sort(r_st) for i in r_st: print(str_con(i,node)) #print(b) print("") # for i in range (len(g.data[p])): # print("Path") # print(shortest_path(g,p,i)) # print("") #---------------------------------------------------------------------------------------------------------------# # first_print = my_list2[0] # second_print = my_list2[1] # p1 = node.index(my_list2[0]) # p2 = node.index(my_list2[1]) # print(f"{first_print} Neighbour Table:") # st = g.get_neighbour(p1) # new_st = n_update(st) # for i in new_st: # print(str_con_n(i,node)) # print("") # print(f'{first_print} LSDB') # if g.data[p1]: #IF ELEMENT EXIST # t = "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,node)) # else: # print(str_con(t,node)) # print("") # print(f"{second_print} Neighbour Table:") # st = g.get_neighbour(p2) # new_st = n_update(st) # for i in new_st: # print(str_con_n(i,node)) # print("") # print(f'{second_print} LSDB:') # if g.data[p2]: #IF ELEMENT EXIST # t = "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,node)) # else: # print(str_con(t,node)) # print("") #---------------------------------------------------------------------------------------------------------------------# # arr = ['X','Y','Z'] # num_nodes = 2 # g = Graph(3); # g.add_edges(0,2,7) # g.lsdb_update() # print('X LSDB') # #print(g.bfs(0)) # if g.data[0]: #IF ELEMENT EXIST # t = "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,arr)) # else: # print(str_con(t,arr)) # print("") # print("Y LSDB") # #print(g.bfs(1)) # if g.data[1]: # t = "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,arr)) # else: # print(str_con(t,arr)) # print("") # g.add_edges(0,1,2) # g.lsdb_update() # g.add_edges(1,2,1) # g.lsdb_update() # print('X LSDB') # #print(g.bfs(0)) # if g.data[0]: # t = "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,arr)) # else: # print(str_con(t,arr)) # print('') # print('Z LSDB') # #print(g.bfs(2)) # if g.data[2]: # t= "\n".join(["{}".format(n) for n in g.lsdb]) # s = t.split("\n") # if len(s) > 1: # for i in s: # print(str_con(i,arr)) # else: # print(str_con(t,arr)) # print('') # #print(g.lsdb) # print(g) # g.print_neighbour(0); #edges = [(0,1),(0,4),(1,2),(1,3),(1,4),(2,3),(3,4)]
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |