import math import logging import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from . import deform_conv_cuda logger = logging.getLogger('base') class DeformConvFunction(Function): @staticmethod def forward(ctx, input, offset, weight, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, im2col_step=64): if input is not None and input.dim() != 4: raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format( input.dim())) ctx.stride = _pair(stride) ctx.padding = _pair(padding) ctx.dilation = _pair(dilation) ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.im2col_step = im2col_step ctx.save_for_backward(input, offset, weight) output = input.new_empty( DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)) ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones if not input.is_cuda: raise NotImplementedError else: cur_im2col_step = min(ctx.im2col_step, input.shape[0]) assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' deform_conv_cuda.deform_conv_forward_cuda(input, weight, offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, offset, weight = ctx.saved_tensors grad_input = grad_offset = grad_weight = None if not grad_output.is_cuda: raise NotImplementedError else: cur_im2col_step = min(ctx.im2col_step, input.shape[0]) assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) deform_conv_cuda.deform_conv_backward_input_cuda( input, offset, grad_output, grad_input, grad_offset, weight, ctx.bufs_[0], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step) if ctx.needs_input_grad[2]: grad_weight = torch.zeros_like(weight) deform_conv_cuda.deform_conv_backward_parameters_cuda( input, offset, grad_output, grad_weight, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, cur_im2col_step) return (grad_input, grad_offset, grad_weight, None, None, None, None, None) @staticmethod def _output_size(input, weight, padding, dilation, stride): channels = weight.size(0) output_size = (input.size(0), channels) for d in range(input.dim() - 2): in_size = input.size(d + 2) pad = padding[d] kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 stride_ = stride[d] output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) if not all(map(lambda s: s > 0, output_size)): raise ValueError("convolution input is too small (output would be {})".format('x'.join( map(str, output_size)))) return output_size class ModulatedDeformConvFunction(Function): @staticmethod def forward(ctx, input, offset, mask, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1): ctx.stride = stride ctx.padding = padding ctx.dilation = dilation ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.with_bias = bias is not None if not ctx.with_bias: bias = input.new_empty(1) # fake tensor if not input.is_cuda: raise NotImplementedError if weight.requires_grad or mask.requires_grad or offset.requires_grad \ or input.requires_grad: ctx.save_for_backward(input, offset, mask, weight, bias) output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight)) ctx._bufs = [input.new_empty(0), input.new_empty(0)] deform_conv_cuda.modulated_deform_conv_cuda_forward( input, weight, bias, ctx._bufs[0], offset, mask, output, ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias) return output @staticmethod @once_differentiable def backward(ctx, grad_output): if not grad_output.is_cuda: raise NotImplementedError input, offset, mask, weight, bias = ctx.saved_tensors grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) grad_mask = torch.zeros_like(mask) grad_weight = torch.zeros_like(weight) grad_bias = torch.zeros_like(bias) deform_conv_cuda.modulated_deform_conv_cuda_backward( input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], grad_input, grad_weight, grad_bias, grad_offset, grad_mask, grad_output, weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias) if not ctx.with_bias: grad_bias = None return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None) @staticmethod def _infer_shape(ctx, input, weight): n = input.size(0) channels_out = weight.size(0) height, width = input.shape[2:4] kernel_h, kernel_w = weight.shape[2:4] height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1 width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1 return n, channels_out, height_out, width_out deform_conv = DeformConvFunction.apply modulated_deform_conv = ModulatedDeformConvFunction.apply class DeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=False): super(DeformConv, self).__init__() assert not bias assert in_channels % groups == 0, \ 'in_channels {} cannot be divisible by groups {}'.format( in_channels, groups) assert out_channels % groups == 0, \ 'out_channels {} cannot be divisible by groups {}'.format( out_channels, groups) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.deformable_groups = deformable_groups self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) def forward(self, x, offset): return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class DeformConvPack(DeformConv): def __init__(self, *args, **kwargs): super(DeformConvPack, self).__init__(*args, **kwargs) self.conv_offset = nn.Conv2d( self.in_channels, self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1], kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding), bias=True) self.init_offset() def init_offset(self): self.conv_offset.weight.data.zero_() self.conv_offset.bias.data.zero_() def forward(self, x): offset = self.conv_offset(x) return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class ModulatedDeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True): super(ModulatedDeformConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.deformable_groups = deformable_groups self.with_bias = bias self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.zero_() def forward(self, x, offset, mask): return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class ModulatedDeformConvPack(ModulatedDeformConv): def __init__(self, *args, extra_offset_mask=False, **kwargs): super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) self.extra_offset_mask = extra_offset_mask self.conv_offset_mask = nn.Conv2d( self.in_channels, self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding), bias=True) self.init_offset() def init_offset(self): self.conv_offset_mask.weight.data.zero_() self.conv_offset_mask.bias.data.zero_() def forward(self, x): if self.extra_offset_mask: # x = [input, features] out = self.conv_offset_mask(x[1]) x = x[0] else: out = self.conv_offset_mask(x) o1, o2, mask = torch.chunk(out, 3, dim=1) offset = torch.cat((o1, o2), dim=1) mask = torch.sigmoid(mask) offset_mean = torch.mean(torch.abs(offset)) if offset_mean > 100: logger.warning('Offset mean is {}, larger than 100.'.format(offset_mean)) return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups)
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |