!pip install torch !pip install torchsummary !pip install torchinfo !pip install builder !pip install util import numpy as np import os import argparse import random from datetime import datetime from tqdm import tqdm import matplotlib.pyplot as plt from scipy.io.wavfile import write from itertools import groupby import math import time import torch import torch.nn as nn import torch.optim as optim import torch.nn.utils.rnn as rnn_utils from torch.autograd import Variable from torchsummary import summary from torchinfo import summary from builder.utils.lars import LARC from control.config import args from builder.data.data_preprocess import get_data_preprocessed # from builder.data.data_preprocess_temp1 import get_data_preprocessed from builder.models import get_detector_model, grad_cam from builder.utils.logger import Logger from builder.utils.utils import set_seeds, set_devices from builder.utils.cosine_annealing_with_warmup import CosineAnnealingWarmUpRestarts from builder.utils.cosine_annealing_with_warmupSingle import CosineAnnealingWarmUpSingle from builder.trainer import get_trainer from builder.trainer import * os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" list_of_test_results_per_seed = [] # define result class save_valid_results = experiment_results_validation(args) save_test_results = experiment_results(args) for seed_num in args.seed_list: args.seed = seed_num set_seeds(args) device = set_devices(args) print(device) logger = Logger(args) logger.evaluator.best_auc = 0 # Load Data, Create Model train_loader, val_loader, test_loader, len_train_dir, len_val_dir, len_test_dir = get_data_preprocessed(args) # print("args: ", args) model = get_detector_model(args) val_per_epochs = 10 model = model(args, device).to(device) criterion = nn.CrossEntropyLoss(reduction='none') if args.checkpoint: if args.last: ckpt_path = args.dir_result + '/' + args.project_name + '/ckpts/best_{}.pth'.format(str(seed_num)) elif args.best: ckpt_path = args.dir_result + '/' + args.project_name + '/ckpts/best_{}.pth'.format(str(seed_num)) checkpoint = torch.load(ckpt_path, map_location=device) model.load_state_dict(checkpoint['model']) logger.best_auc = checkpoint['score'] start_epoch = checkpoint['epoch'] del checkpoint else: logger.best_auc = 0 start_epoch = 1 if args.optim == 'adam': optimizer = optim.Adam(model.parameters(), lr=args.lr_init, weight_decay=args.weight_decay) elif args.optim == 'sgd': optimizer = optim.SGD(model.parameters(), lr=args.lr_init, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optim == 'adamw': optimizer = optim.AdamW(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) elif args.optim == 'adam_lars': optimizer = optim.Adam(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001) elif args.optim == 'sgd_lars': optimizer = optim.SGD(model.parameters(), lr=args.lr_init, momentum=args.momentum, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001) elif args.optim == 'adamw_lars': optimizer = optim.AdamW(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001) one_epoch_iter_num = len(train_loader) print("Iterations per epoch: ", one_epoch_iter_num) iteration_num = args.epochs * one_epoch_iter_num if args.lr_scheduler == "CosineAnnealing": scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=args.t_0*one_epoch_iter_num, T_mult=args.t_mult, eta_max=args.lr_max, T_up=args.t_up*one_epoch_iter_num, gamma=args.gamma) elif args.lr_scheduler == "Single": scheduler = CosineAnnealingWarmUpSingle(optimizer, max_lr=args.lr_init * math.sqrt(args.batch_size), epochs=args.epochs, steps_per_epoch=one_epoch_iter_num, div_factor=math.sqrt(args.batch_size)) model.train() iteration = 0 logger.loss = 0 start = time.time() pbar = tqdm(total=args.epochs, initial=0, bar_format="{desc:<5}{percentage:3.0f}%|{bar:10}{r_bar}") for epoch in range(start_epoch, args.epochs+1): epoch_losses =[] loss = 0 for train_batch in train_loader: train_x, train_y, seq_lengths, target_lengths, aug_list, signal_name_list = train_batch train_x, train_y = train_x.to(device), train_y.to(device) iteration += 1 model, iter_loss = get_trainer(args, iteration, train_x, train_y, seq_lengths, target_lengths, model, logger, device, scheduler, optimizer, criterion, signal_name_list) logger.loss += np.mean(iter_loss) ### LOGGING if iteration % args.log_iter == 0: logger.log_tqdm(epoch, iteration, pbar) logger.log_scalars(iteration) ### VALIDATION if iteration % (one_epoch_iter_num//val_per_epochs) == 0: model.eval() logger.evaluator.reset() val_iteration = 0 logger.val_loss = 0 with torch.no_grad(): for idx, batch in enumerate(tqdm(val_loader)): val_x, val_y, seq_lengths, target_lengths, aug_list, signal_name_list = batch val_x, val_y = val_x.to(device), val_y.to(device) model, val_loss = get_trainer(args, iteration, val_x, val_y, seq_lengths, target_lengths, model, logger, device, scheduler, optimizer, criterion, signal_name_list, flow_type=args.test_type) logger.val_loss += np.mean(val_loss) val_iteration += 1 logger.log_val_loss(val_iteration, iteration) logger.add_validation_logs(iteration) logger.save(model, optimizer, iteration, epoch) model.train() pbar.update(1) logger.val_result_only() save_valid_results.results_all_seeds(logger.test_results) # get model checkpoint - end of train step # initalize model (again) del model model = get_detector_model(args) val_per_epochs = 2 print("#################################################") print("################# Test Begins ###################") print("#################################################") model = model(args, device).to(device) logger = Logger(args) # load model checkpoint if args.last: ckpt_path = args.dir_result + '/' + args.project_name + '/ckpts/last.pth' elif args.best: ckpt_path = args.dir_result + '/' + args.project_name + '/ckpts/best.pth' if not os.path.exists(ckpt_path): print("Final model for test experiment doesn't exist...") exit(1) # load model & state ckpt = torch.load(ckpt_path, map_location=device) state = {k: v for k, v in ckpt['model'].items()} model.load_state_dict(state) # initialize test step model.eval() logger.evaluator.reset() with torch.no_grad(): for test_batch in tqdm(test_loader, total=len(test_loader), bar_format="{desc:<5}{percentage:3.0f}%|{bar:10}{r_bar}"): test_x, test_y, seq_lengths, target_lengths, aug_list, signal_name_list = test_batch test_x, test_y = test_x.to(device), test_y.to(device) ### Model Structures model, _ = get_trainer(args, iteration, test_x, test_y, seq_lengths, target_lengths, model, logger, device, scheduler, optimizer, criterion, signal_name_list=signal_name_list, flow_type="test") # margin_test , test logger.test_result_only() list_of_test_results_per_seed.append(logger.test_results) logger.writer.close() auc_list = [] apr_list = [] f1_list = [] tpr_list = [] tnr_list = [] os.system("echo \'#######################################\'") os.system("echo \'##### Final test results per seed #####\'") os.system("echo \'#######################################\'") for result, tpr, tnr in list_of_test_results_per_seed: os.system("echo \'seed_case:{} -- auc: {}, apr: {}, f1_score: {}, tpr: {}, tnr: {}\'".format(str(result[0]), str(result[1]), str(result[2]), str(result[3]), str(tpr), str(tnr))) auc_list.append(result[1]) apr_list.append(result[2]) f1_list.append(result[3]) tpr_list.append(tpr) tnr_list.append(tnr) os.system("echo \'Total average -- auc: {}, apr: {}, f1_score: {}, tnr: {}, tpr: {}\'".format(str(np.mean(auc_list)), str(np.mean(apr_list)), str(np.mean(f1_list)), str(np.mean(tpr_list)), str(np.mean(tnr_list)))) os.system("echo \'Total std -- auc: {}, apr: {}, f1_score: {}, tnr: {}, tpr: {}\'".format(str(np.std(auc_list)), str(np.std(apr_list)), str(np.std(f1_list)), str(np.std(tpr_list)), str(np.std(tnr_list))))
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |