#!/usr/bin/env python """ adc_dac_ideal_subcircuit_class_test.py: set of classes for an ideal N-bit ADC/DAC modelling with PySpice """ __author__ = "Olzhas S. Tazabekov" import PySpice.Logging.Logging as Logging #logger = Logging.setup_logging() from PySpice.Unit.Units import * from PySpice.Spice.Netlist import Circuit from PySpice.Spice.Netlist import DeviceModel from PySpice.Spice.Netlist import SubCircuitFactory import matplotlib.pyplot as plt import numpy as np ''' BitLogic Subcircuit Schematic vdd | bx--\----trip | |---bxl | bx----/--trip | vss Trip V generation Schematic vdd | |res| |---trip |res| | vss ''' class BitLogic(SubCircuitFactory): __name__='BITLOGIC' # subcircuit name __nodes__=('bx', 'bxl', 'vdd', 'vss') # subcircuit nodes set def __init__(self): super().__init__() # initialize a parent class - SubCircuitFactory # add model parameters for the ideal switches to the BitLogic Subcircuit self.swmod_params = {'ron':1E-2, 'roff':1E6} self.model('swmod','sw', **self.swmod_params) # add a resistive voltage divider to generate the threshold voltage value for switching self.R('top', 'vdd', 'trip', 100E6) self.R('bot', 'trip', 'vss', 100E6) # add swicthes and specify their model parameters self.VCS('top', 'bx', 'trip', 'vdd', 'bxl', model='swmod') self.VCS('bot', 'trip', 'bx', 'bxl', 'vss', model='swmod') ''' Ideal DAC SubCircuit Shematic refp vdd | | -------------------------------------- b0--| |bitlogic0|--bxl0--| | | b1--| |bitlogic1|--bxl1--| behavioral |--|--out ... | ... |voltage source| | b5--| |bitlogic5|--bxl5--| | | -------------------------------------- | | refn vss ''' class IdealDac(SubCircuitFactory): __name__ = 'IDEALDAC' def __init__(self, nbits, **kwargs): # number of bits passed as a parameter self.nbits = nbits # nodes definition based on nbits parameter self.__nodes__ = ('refp', 'refn', 'vdd', 'vss') + tuple([('b'+str(i)) for i in range(self.nbits)]) + ('out',) super().__init__() # add an nbit number of BitLogic subcircuits for i in range(0, self.nbits): bitstr = str(i) self.X('BL'+bitstr, 'BITLOGIC', 'b'+bitstr, 'b'+bitstr+'l', 'vdd', 'vss') # make an output voltage expression based on nbits parameter and pass this string into added BehavioralSource self.voltage_expression = ''.join(['(v(refp)-v(refn))/'+str(2**self.nbits)+'*(']+[('v(b'+str(i)+'l)*'+str(2**i)+'+') for i in range(self.nbits)]+['0)+v(refn)']) self.BehavioralSource('out', 'out', 'vss', voltage_expression=self.voltage_expression) ''' Ideal Sample and Holde Subcircuit vdd | -------------------------------------------------------------------------- | ----------- ------------ | in--| | | | | | | | ------- | | -------- | | clk--| -|- | | -|- | | | | | inbuf |----inbuf--\ ---inS-------\ ---outS------| | outbuf |----|--out trip--| in--|+ | | | | | |---|+ | | | ------- | |Cap| | |Cap| -------- | | clk_ | clk | | | vss vss | -------------------------------------------------------------------------- | vss ''' class IdealSampleHold(SubCircuitFactory): __name__ = 'IDEALSAMPLEHOLD' __nodes__ = ('in', 'trip', 'clk', 'vdd', 'vss', 'out') def __init__(self, **kwargs): super().__init__() #switches model self.swmod_params = {'ron':1E-2, 'roff':1E6} self.model('swmod','sw', **self.swmod_params) #элементы схемотехники Сэмпл Холд self.VCVS('in', 'in', 'inbuf', 'inbuf', 'vss', voltage_gain=100E6) self.VCS('1', 'trip', 'clk', 'inbuf', 'inS', model='swmod') self.C('s1', 'inS', 'vss', 1E-10) self.VCS('2', 'clk', 'trip', 'inS', 'outS', model='swmod') self.C('outS', 'outS', 'vss', 1E-12) self.VCVS('out', 'outS', 'out', 'out', 'vss', voltage_gain=100E6) ''' Ideal Pipeline stage 1. Сигнал из Sample/Hold сравнивается с референсом в компараторе. 2. если инпут больше референса - на оутпут выводится 1, референс вычитается из инпута и умножается на 2 и передается сл элементу если инпут меньше референса - на оутпут вывподится 0, инпут умножается на 2 и передается сл элементу 3. Повторить ''' class IdealPipelineStage(SubCircuitFactory): __name__ = 'IDEALPIPELINESTAGE' __nodes__ = ('in', 'cm', 'trip','vdd', 'vss', 'bitout', 'out') def __init__(self, **kwargs): super().__init__() #Swiches models self.swmod_params = {'ron':1E-2, 'roff':1E6} self.model('swmod','sw', **self.swmod_params) #Элементы схемотехники Пайплайн Стейдж self.VCS('1', 'in', 'cm', 'vdd', 'bitout', model='swmod') self.VCS('2', 'cm', 'in', 'vss', 'bitout', model='swmod') self.VCVS('outh', 'in', 'cm', 'vinh', 'vss', voltage_gain=2) self.VCVS('outl', 'in', 'vss', 'vinl', 'vss', voltage_gain=2) self.VCS('3', 'bitout', 'trip', 'vinh', 'out', model='swmod') self.VCS('4', 'trip', 'bitout', 'vinl', 'out', model='swmod') ''' Ideal ADC Subcircuit vdd | ------------------------------------------------------------------------------------------------------------------------- | | refp--|-| |--bitout1 | cm----- refp--- refn--- --bitout1 --bitout2 --bitoutN | refn--|-| | | | | | | |--bitout2 | |Sample/Hold|--outsh--|levelshift by lsb/2 & refn|--pipin--|stage1|--out1--|stage2|--out2-- ..N ..|stageN|--outN | clk--|--------| | |-- ... | | | in--|------------ |--bitoutN | | ------------------------------------------------------------------------------------------------------------------------- | vss ''' class IdealAdc(SubCircuitFactory): __name__ = 'IDEALADC' def __init__(self, nbits, **kwargs): #number of bits self.nbits = nbits self.__nodes__ = ('refp', 'refn', 'vdd', 'vss', 'in', 'clk') + tuple([('b'+str(i)) for i in range(self.nbits)]) super().__init__() #common voltage definition = (refp+refn)/2 self.BehavioralSource('cm', 'cm', self.gnd, voltage_expression='(v(refp)+v(refn))/2') #logic switching point self.R('top', 'vdd', 'trip', 10E6) self.R('bot', 'trip', 'vss', 10E6) #ideal sample and hold self.X('idealsamplehold', 'IDEALSAMPLEHOLD', 'in', 'trip', 'clk', 'vdd', 'vss', 'outsh') #levelshift by refn and 1/2LSB self.BehavioralSource('pip', 'pipin', 'vss', voltage_expression='v(outsh)-v(refn)+((v(refp)-v(refn))/2^'+str(self.nbits+1)+')') #Каскад пайплайн стейдж self.X('idealpipelinestage'+str(self.nbits-1), 'IDEALPIPELINESTAGE', 'pipin', 'cm', 'trip', 'vdd', 'vss', 'b'+str(self.nbits-1), 'out'+str(self.nbits-1)) for i in range(self.nbits-1, 0, -1): bitstr = str(i) prev_bitstr = str(i-1) self.X('idealpipelinestage'+prev_bitstr, 'IDEALPIPELINESTAGE', 'out'+bitstr, 'cm', 'trip', 'vdd', 'vss', 'b'+prev_bitstr, 'out'+prev_bitstr) if __name__ == "__main__": #ADC/DAC Transient Test Bench Diagram ''' --- --- | |--b0--| | |vsin|--in--|ADC|--..--|DAC|--out clk--| |--bn--| | --- --- ''' #ADC/DAC Transient Test Bench Vars dac_nbits = 6 adc_nbits = 6 f_signal = 10E6 amp_signal = 0.5 dc_signal = 0.5 f_sample = 100E6 t_sample = 1/f_sample #Simulator Vars tran_sim_end_time = 1E2/f_signal #Test Bench Definition circuit = Circuit('TestBench') circuit.subcircuit(IdealDac(nbits=dac_nbits)) circuit.subcircuit(BitLogic()) circuit.subcircuit(IdealSampleHold()) circuit.subcircuit(IdealPipelineStage()) circuit.subcircuit(IdealAdc(nbits=adc_nbits)) #Instantiating Sources # -input source circuit.Sinusoidal('in1', 'in1', circuit.gnd, dc_offset=dc_signal, offset=dc_signal, amplitude=amp_signal, frequency=f_signal, delay=0, damping_factor=0) # -supply rails and references circuit.V('vdd', 'vdd', circuit.gnd, 1) circuit.V('refp', 'vrefp', circuit.gnd, 1) circuit.V('refn', 'vrefn', circuit.gnd, 0) # - clock circuit.Pulse('clk', 'clk', circuit.gnd, 0, 1, t_sample/2, t_sample, fall_time=0.01*t_sample, rise_time=0.01*t_sample) # -ADC/DAC circuit.X('ADC', 'IDEALADC', 'vrefp', 'vrefn', 'vdd', circuit.gnd, 'in1', 'clk', ', '.join([('b'+str(i)) for i in range(adc_nbits)])) circuit.X('DAC', 'IDEALDAC', 'vrefp', 'vrefn', 'vdd', circuit.gnd, ', '.join([('b'+str(i)) for i in range(dac_nbits)]), 'out') #Transient Sims # -instantiating a simulator simulator = circuit.simulator(temperature=25, nominal_temperature=25) # -defining Simulator Properties simulator.options('MAXORD=5') simulator.options('METHOD=Gear') # -Extractin Analysis Data analysis = simulator.transient(step_time=1E-9, end_time=tran_sim_end_time) #Printing the Circuit Nodes (optional) #print(analysis.nodes.values()) #Plotting Transient Sims Data f, axarr = plt.subplots(adc_nbits+2, sharex=True) f.tight_layout() axarr[0].set_title('ADC Input and DAC Output') axarr[0].plot(analysis.time, np.array(analysis.in1)) axarr[0].plot(analysis.time, np.array(analysis.out)) axarr[1].set_title('ADC Clock and Trip Voltage') axarr[1].plot(analysis.time, np.array(analysis.clk)) axarr[1].plot(analysis.time, np.array(analysis.nodes['xadc.trip'])) for i in range(adc_nbits): axarr[i+2].set_title('ADC Bit '+str(i)) axarr[i+2].plot(analysis.time, np.array(analysis.nodes['b'+str(i)])) axarr[len(axarr)-1].set_xlabel('time [s]') #Ramp-up Test Bench Definition circuit_pwl = Circuit('TestBench') circuit_pwl.subcircuit(IdealDac(nbits=dac_nbits)) circuit_pwl.subcircuit(BitLogic()) circuit_pwl.subcircuit(IdealSampleHold()) circuit_pwl.subcircuit(IdealPipelineStage()) circuit_pwl.subcircuit(IdealAdc(nbits=adc_nbits)) #Instantiating Sources # -input source circuit_pwl.V('in1', 'in1', circuit.gnd, 'pwl(0 0 '+str(tran_sim_end_time)+' 1 r=0') # -supply rails and references circuit_pwl.V('vdd', 'vdd', circuit.gnd, 1) circuit_pwl.V('refp', 'vrefp', circuit.gnd, 1) circuit_pwl.V('refn', 'vrefn', circuit.gnd, 0) # - clock circuit_pwl.Pulse('clk', 'clk', circuit.gnd, 0, 1, t_sample/2, t_sample, fall_time=0.01*t_sample, rise_time=0.01*t_sample) # -ADC/DAC circuit_pwl.X('ADC', 'IDEALADC', 'vrefp', 'vrefn', 'vdd', circuit.gnd, 'in1', 'clk', ', '.join([('b'+str(i)) for i in range(adc_nbits)])) circuit_pwl.X('DAC', 'IDEALDAC', 'vrefp', 'vrefn', 'vdd', circuit.gnd, ', '.join([('b'+str(i)) for i in range(dac_nbits)]), 'out') #Transient Sims # -instantiating a simulator simulator_pwl = circuit_pwl.simulator(temperature=25, nominal_temperature=25) # -defining Simulator Properties simulator_pwl.options('MAXORD=5') simulator_pwl.options('METHOD=Gear') # -Extractin Analysis Data analysis_pwl = simulator_pwl.transient(step_time=1E-9, end_time=tran_sim_end_time) #Printing the Circuit Nodes (optional) #print(analysis.nodes.values()) #Plotting Transient Sims Data f_pwl, axarr_pwl = plt.subplots(adc_nbits+2, sharex=True) f_pwl.tight_layout() axarr_pwl[0].set_title('ADC Input and DAC Output') axarr_pwl[0].plot(analysis_pwl.time, np.array(analysis_pwl.in1)) axarr_pwl[0].plot(analysis_pwl.time, np.array(analysis_pwl.out)) axarr_pwl[1].set_title('ADC Clock and Trip Voltage') axarr_pwl[1].plot(analysis_pwl.time, np.array(analysis_pwl.clk)) axarr_pwl[1].plot(analysis_pwl.time, np.array(analysis_pwl.nodes['xadc.trip'])) for i in range(adc_nbits): axarr_pwl[i+2].set_title('ADC Bit '+str(i)) axarr_pwl[i+2].plot(analysis_pwl.time, np.array(analysis_pwl.nodes['b'+str(i)])) axarr_pwl[len(axarr)-1].set_xlabel('time [s]') #Quantization Noise. Fourier Transform of the ADC input and DAC Output N = np.array(analysis.in1).size T = analysis.time[1]-analysis.time[0] print('N: '+str(N)) print('T: '+str(T)) signal = np.array(analysis.in1) fft_signal = np.abs(np.fft.fft(signal)) max_fft_signal = np.max(fft_signal) output = np.array(analysis.out) fft_output = np.abs(np.fft.fft(output)) max_fft_output = np.max(fft_output) freq_fft = np.linspace(0, 1/(2*T), N//2) f_q, axarr_q = plt.subplots(2) f_q.tight_layout() axarr_q[0].set_title('ADC Input and DAC Output Noise Floor. Frequency Domain ') axarr_q[0].plot(freq_fft[:N//2], 20*np.log10(2/N*fft_signal[:N//2])) axarr_q[0].plot(freq_fft[:N//2], 20*np.log10(2/N*fft_output[:N//2])) axarr_q[1].set_title('ADC Input and DAC Output. Time Domain') axarr_q[1].plot(analysis.time, signal) axarr_q[1].plot(analysis.time, output) plt.grid(True) plt.show()
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset = {"iPhone","Pixel","Samsung"}
print(myset)
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |