# Install surprise library using: pip install scikit-surprise

from surprise import Dataset, Reader, KNNBasic
from surprise.model_selection import train_test_split
from surprise import accuracy

# Sample data (user, item, rating)
data = [
    ('User1', 'Movie1', 4),
    ('User1', 'Movie2', 3),
    ('User2', 'Movie1', 5),
    ('User2', 'Movie2', 2),
    ('User3', 'Movie1', 3),
    ('User3', 'Movie2', 4),
]

# Define the reader to parse the data
reader = Reader(rating_scale=(1, 5))
# Load the dataset
dataset = Dataset.load_from_df(data, reader)

# Split the dataset into training and testing sets
trainset, testset = train_test_split(dataset, test_size=0.2)

# Use the KNNBasic algorithm for collaborative filtering
sim_options = {
    'name': 'cosine',
    'user_based': False  # Item-based collaborative filtering
}
model = KNNBasic(sim_options=sim_options)

# Train the model
model.fit(trainset)

# Make predictions on the test set
predictions = model.test(testset)

# Evaluate the model
accuracy.rmse(predictions)

# Function to get movie recommendations for a given user
def get_movie_recommendations(user_id, n=5):
    # Get a list of all movie IDs
    all_movie_ids = dataset.build_full_trainset().all_items()

    # Remove movies the user has already watched
    movies_watched = [item[0] for item in trainset.ur[trainset.to_inner_uid(user_id)]]
    movies_to_predict = [movie_id for movie_id in all_movie_ids if movie_id not in movies_watched]

    # Make predictions for the remaining movies
    predictions = [model.predict(user_id, movie_id) for movie_id in movies_to_predict]

    # Sort the predictions by estimated rating in descending order
    predictions.sort(key=lambda x: x.est, reverse=True)

    # Get the top N recommendations
    top_n = predictions[:n]

    # Return the movie IDs and estimated ratings
    return [(dataset.to_raw_iid(prediction.iid), prediction.est) for prediction in top_n]

# Example: Get recommendations for 'User1'
user_id = 'User1'
recommendations = get_movie_recommendations(user_id)
print(f"Top 5 movie recommendations for {user_id}: {recommendations}")
 

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling