# Naschschatz-Abenteuer im Dunkeln # Ein Spiel, in dem man im Dunkeln nach Schätzen sucht und Punkte sammelt # Benötigt die Pygame-Bibliothek import pygame import random # Konstanten für die Fenstergröße WINDOW_WIDTH = 800 WINDOW_HEIGHT = 600 # Konstanten für die Farben BLACK = (0, 0, 0) WHITE = (255, 255, 255) YELLOW = (255, 255, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) # Konstanten für die Spielobjekte PLAYER_SIZE = 20 PLAYER_SPEED = 5 WALL_SIZE = 10 WALL_COLOR = WHITE LAMP_SIZE = 30 LAMP_COLOR = YELLOW LAMP_RADIUS = 100 COIN_SIZE = 10 COIN_COLOR = YELLOW COIN_VALUE = 10 CANDY_SIZE = 10 CANDY_COLOR = RED CANDY_VALUE = 1 MAX_LIVES = 4 MAX_POINTS = 1000 MAX_LEVELS = 50 MAX_TIME = 120 # in Sekunden # Initialisierung von Pygame pygame.init() window = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT)) pygame.display.set_caption("Naschschatz-Abenteuer im Dunkeln") clock = pygame.time.Clock() # Erstellung einer Klasse für den Spieler class Player: def __init__(self, x, y): self.x = x self.y = y self.rect = pygame.Rect(self.x, self.y, PLAYER_SIZE, PLAYER_SIZE) self.color = GREEN self.lives = MAX_LIVES self.points = 0 self.level = 1 def draw(self): pygame.draw.rect(window, self.color, self.rect) def move(self, dx, dy): self.x += dx self.y += dy self.rect = pygame.Rect(self.x, self.y, PLAYER_SIZE, PLAYER_SIZE) def collide(self, other): return self.rect.colliderect(other.rect) # Erstellung einer Klasse für die Wände class Wall: def __init__(self, x, y, width, height): self.x = x self.y = y self.rect = pygame.Rect(self.x, self.y, width, height) self.color = WALL_COLOR def draw(self): pygame.draw.rect(window, self.color, self.rect) # Erstellung einer Klasse für die Lampen class Lamp: def __init__(self, x, y): self.x = x self.y = y self.rect = pygame.Rect(self.x, self.y, LAMP_SIZE, LAMP_SIZE) self.color = LAMP_COLOR self.on = False def draw(self): pygame.draw.rect(window, self.color, self.rect) if self.on: pygame.draw.circle(window, self.color, (self.x + LAMP_SIZE // 2, self.y + LAMP_SIZE // 2), LAMP_RADIUS, 1) def toggle(self): self.on = not self.on def illuminate(self, other): return self.on and ((self.x - other.x) ** 2 + (self.y - other.y) ** 2) <= (LAMP_RADIUS + other.size // 2) ** 2 # Erstellung einer Klasse für die Münzen class Coin: def __init__(self, x, y): self.x = x self.y = y self.rect = pygame.Rect(self.x, self.y, COIN_SIZE, COIN_SIZE) self.color = COIN_COLOR self.value = COIN_VALUE self.size = COIN_SIZE def draw(self): pygame.draw.rect(window, self.color, self.rect) # Erstellung einer Klasse für die Süßigkeiten class Candy: def __init__(self, x, y): self.x = x self.y = y self.rect = pygame.Rect(self.x, self.y, CANDY_SIZE, CANDY_SIZE) self.color = CANDY_COLOR self.value = CANDY_VALUE self.size = CANDY_SIZE def draw(self): pygame.draw.rect(window, self.color, self.rect) # Erstellung einer Funktion für die Textanzeige def draw_text(text, x, y, size, color): font = pygame.font.SysFont("Arial", size) text_surface = font.render(text, True, color) text_rect = text_surface.get_rect() text_rect.center = (x, y) window.blit(text_surface, text_rect) # Erstellung einer Funktion für die Spiellogik def game_logic(): global running, player, walls, lamps, coins, candies, time_left, game_over, game_win # Abfrage der Tastatureingaben keys = pygame.key.get_pressed() dx = 0 dy = 0 if keys[pygame.K_LEFT]: dx = -PLAYER_SPEED if keys[pygame.K_RIGHT]: dx = PLAYER_SPEED if keys[pygame.K_UP]: dy = -PLAYER_SPEED if keys[pygame.K_DOWN]: dy = PLAYER_SPEED # Bewegung des Spielers player.move(dx, dy) # Kollision mit den Wänden for wall in walls: if player.collide(wall): player.lives -= 1 player.x -= dx player.y -= dy player.rect = pygame.Rect(player.x, player.y, PLAYER_SIZE, PLAYER_SIZE) break # Kollision mit den Lampen for lamp in lamps: if player.collide(lamp): lamp.toggle() # Kollision mit den Münzen for coin in coins: if player.collide(coin): player.points += coin.value coins.remove(coin) # Kollision mit den Süßigkeiten for candy in candies: if player.collide(candy): player.lives = min(player.lives + candy.value, MAX_LIVES) candies.remove(candy) # Überprüfung der Spielbedingungen if player.lives <= 0: game_over = True elif player.points >= MAX_POINTS: game_win = True elif time_left <= 0: game_over = True elif len(coins) == 0 and len(candies) == 0: player.level += 1 generate_level() # Aktualisierung der verbleibenden Zeit time_left -= clock.get_time() / 1000 # Erstellung einer Funktion für die Grafikausgabe def game_draw(): global running, player, walls, lamps, coins, candies, time_left, game_over, game_win # Füllen des Hintergrunds mit Schwarz window.fill(BLACK) # Zeichnen der Spielobjekte player.draw() for wall in walls: if any(lamp.illuminate(wall) for lamp in lamps): wall.draw() for lamp in lamps: lamp.draw() for coin in coins: if any(lamp.illuminate(coin) for lamp in lamps): coin.draw() for candy in candies: if any(lamp.illuminate(candy) for lamp in lamps): candy.draw() # Zeichnen der Spielinformationen draw_text(f"Leben: {player.lives}", 50, 20, 20, WHITE) draw_text(f"Punkte: {player.points}", 150, 20, 20, WHITE) draw_text(f"Level: {player.level}", 250, 20, 20, WHITE) draw_text(f"Zeit: {int(time_left)}", 350, 20, 20, WHITE) # Zeichnen der Spielendenachrichten if game_over: draw_text("Game Over", WINDOW_WIDTH // 2, WINDOW_HEIGHT // 2, 40, RED) elif game_win: draw_text("Du hast gewonnen!", WINDOW_WIDTH // 2, WINDOW_HEIGHT // 2, 40, GREEN) # Aktualisierung des Fensters pygame.display.update() # Erstellung einer Funktion für die Levelgenerierung def generate_level(): global running, player, walls, lamps, coins, candies, time_left, game_over, game_win # Zurücksetzen der Spielobjekte walls = [] lamps = [] coins = [] candies = [] # Erstellung der Außenwände walls.append(Wall(0, 0, WINDOW_WIDTH, WALL_SIZE)) walls.append(Wall(0, 0, WALL_SIZE, WINDOW_HEIGHT)) walls.append(Wall(0, WINDOW_HEIGHT - WALL_SIZE, WINDOW_WIDTH, WALL_SIZE)) walls.append(Wall(W
Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.
OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.
import sys
name = sys.stdin.readline()
print("Hello "+ name)
Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.
When ever you want to perform a set of operations based on a condition IF-ELSE is used.
if conditional-expression
#code
elif conditional-expression
#code
else:
#code
Indentation is very important in Python, make sure the indentation is followed correctly
For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.
mylist=("Iphone","Pixel","Samsung")
for i in mylist:
print(i)
While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.
while condition
#code
There are four types of collections in Python.
List is a collection which is ordered and can be changed. Lists are specified in square brackets.
mylist=["iPhone","Pixel","Samsung"]
print(mylist)
Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
Below throws an error if you assign another value to tuple again.
myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)
Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.
myset{"iPhone","Pixel","Samsung"}
print{myset}
Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.
mydict = {
"brand" :"iPhone",
"model": "iPhone 11"
}
print(mydict)
Following are the libraries supported by OneCompiler's Python compiler
Name | Description |
---|---|
NumPy | NumPy python library helps users to work on arrays with ease |
SciPy | SciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation |
SKLearn/Scikit-learn | Scikit-learn or Scikit-learn is the most useful library for machine learning in Python |
Pandas | Pandas is the most efficient Python library for data manipulation and analysis |
Matplotlib | Matplotlib is a cross-platform, data visualization and graphical plotting library for Python programming and it's numerical mathematics extension NumPy |
DOcplex | DOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling |