import hydra
import torch
import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array

import cv2
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from collections import deque
import numpy as np
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
data_deque = {}

deepsort = None


def count(founded_classes, im0):
  model_values=[]
  aligns=im0.shape
  #align_bottom variable represents the height of the image
  align_bottom=aligns[0]/14
  #align width variable represnts the width of the image
  align_right=(aligns[1]/1.2)
  for i,(k,v) in enumerate (founded_classes.items()):
    a=f"{k} = {v}"
    model_values.append(v)
    align_bottom=align_bottom+35
    cv2.line(im0, (int(align_right),int(align_bottom-10)), (int(align_right+210),int(align_bottom-10)), (0,255,0), 40) 
    cv2.putText(im0,str(a),(int(align_right),int(align_bottom)),cv2.FONT_HERSHEY_SIMPLEX,1, (255,255,255),2,cv2.LINE_AA)

class GenderClassifier ():
    def __init__(self, weights) :
        self.weights = weights
        self.model = self.load_model()

    def preprocess_image (self, image):
        face_crop = cv2.resize(image, (100,100))
        face_crop = face_crop.astype("float") / 255.0
        face_crop = img_to_array(face_crop)
        face_crop = np.expand_dims(face_crop, axis=0)
        return face_crop
    
    def load_model(self):
        model = load_model(self.weights)
        return model

    def predict (self, image):
        classes = ['man','woman']
        face_crop = self.preprocess_image(image)
        conf = self.model.predict(face_crop)[0] # model.predict return a 2D matrix, ex: [[9.9993384e-01 7.4850512e-05]]
        # get label with max accuracy
        idx = np.argmax(conf)
        label = classes[idx]
        label = "{}".format(label)
        return label

def init_tracker():
    global deepsort
    cfg_deep = get_config()
    cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")

    deepsort= DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
                            max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
                            nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
                            max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
                            use_cuda=True)
##########################################################################################
def xyxy_to_xywh(*xyxy):
    """" Calculates the relative bounding box from absolute pixel values. """
    bbox_left = min([xyxy[0].item(), xyxy[2].item()])
    bbox_top = min([xyxy[1].item(), xyxy[3].item()])
    bbox_w = abs(xyxy[0].item() - xyxy[2].item())
    bbox_h = abs(xyxy[1].item() - xyxy[3].item())
    x_c = (bbox_left + bbox_w / 2)
    y_c = (bbox_top + bbox_h / 2)
    w = bbox_w
    h = bbox_h
    return x_c, y_c, w, h

def xyxy_to_tlwh(bbox_xyxy):
    tlwh_bboxs = []
    for i, box in enumerate(bbox_xyxy):
        x1, y1, x2, y2 = [int(i) for i in box]
        top = x1
        left = y1
        w = int(x2 - x1)
        h = int(y2 - y1)
        tlwh_obj = [top, left, w, h]
        tlwh_bboxs.append(tlwh_obj)
    return tlwh_bboxs

def compute_color_for_labels(label):
    """
    Simple function that adds fixed color depending on the class
    """
    if label == 0: #person
        color = (85,45,255)
    elif label == 2: # Car
        color = (222,82,175)
    elif label == 3:  # Motobike
        color = (0, 204, 255)
    elif label == 5:  # Bus
        color = (0, 149, 255)
    else:
        color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
    return tuple(color)

def draw_border(img, pt1, pt2, color, thickness, r, d):
    x1,y1 = pt1
    x2,y2 = pt2
    # Top left
    cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
    cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
    cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
    # Top right
    cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
    cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
    cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
    # Bottom left
    cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
    cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
    cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
    # Bottom right
    cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
    cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
    cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)

    cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA)
    cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA)
    
    cv2.circle(img, (x1 +r, y1+r), 2, color, 12)
    cv2.circle(img, (x2 -r, y1+r), 2, color, 12)
    cv2.circle(img, (x1 +r, y2-r), 2, color, 12)
    cv2.circle(img, (x2 -r, y2-r), 2, color, 12)
    
    return img

def UI_box(x, img, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        cv2.rectangle(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color,-1,  cv2.LINE_AA)
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)



def draw_boxes(img, bbox, names,object_id, identities=None, offset=(0, 0)):
    #cv2.line(img, line[0], line[1], (46,162,112), 3)
    classifier = GenderClassifier("model.h5")
    height, width, _ = img.shape
    # remove tracked point from buffer if object is lost
    for key in list(data_deque):
      if key not in identities:
        data_deque.pop(key)

    for i, box in enumerate(bbox):
        x1, y1, x2, y2 = [int(i) for i in box]
        x1 += offset[0]
        x2 += offset[0]
        y1 += offset[1]
        y2 += offset[1]
        roi = img[y1:y2, x1:x2]
        gender_label = ""
        if (roi.shape[0]) > 10 or (roi.shape[1]) > 10:
            gender_label = classifier.predict(roi)
        Y = y1 - 10 if y1 - 10 > 10 else y1 + 10
        text = gender_label
        # get ID of object
        id = int(identities[i]) if identities is not None else 0
        label = '{}{:d}'.format("", id) + ":"+ '%s' % (text)
        text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
        text_w, text_h = text_size[0]
        cv2.rectangle(img, (x1,y1), (x2, y2), (0,103,255), thickness=2, lineType=cv2.LINE_AA)
        cv2.line(img, (x1, Y), (text_w+x1, Y), (121, 233, 121), 30)
        cv2.putText(img, label, (x1, Y),  cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (255, 255, 255), 2)

    return img


class DetectionPredictor(BasePredictor):

    def get_annotator(self, img):
        return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))

    def preprocess(self, img):
        img = torch.from_numpy(img).to(self.model.device)
        img = img.half() if self.model.fp16 else img.float()  # uint8 to fp16/32
        img /= 255  # 0 - 255 to 0.0 - 1.0
        return img

    def postprocess(self, preds, img, orig_img):
        preds = ops.non_max_suppression(preds,
                                        self.args.conf,
                                        self.args.iou,
                                        agnostic=self.args.agnostic_nms,
                                        max_det=self.args.max_det)

        for i, pred in enumerate(preds):
            shape = orig_img[i].shape if self.webcam else orig_img.shape
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()

        return preds

    def write_results(self, idx, preds, batch):
        p, im, im0 = batch
        all_outputs = []
        log_string = ""
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        self.seen += 1
        im0 = im0.copy()
        if self.webcam:  # batch_size >= 1
            log_string += f'{idx}: '
            frame = self.dataset.count
        else:
            frame = getattr(self.dataset, 'frame', 0)

        self.data_path = p
        save_path = str(self.save_dir / p.name)  # im.jpg
        self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
        log_string += '%gx%g ' % im.shape[2:]  # print string
        self.annotator = self.get_annotator(im0)

        det = preds[idx]
        all_outputs.append(det)
        if len(det) == 0:
            return log_string
        founded_classes = {}
        for c in det[:, 5].unique():
            n = (det[:, 5] == c).sum()  # detections per class
            class_index=int(c)
            count_of_object=int(n)
            founded_classes[self.model.names[class_index]]=int(n)
            log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
            count(founded_classes=founded_classes,im0=im0)

        # write
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        xywh_bboxs = []
        confs = []
        oids = []
        outputs = []
        for *xyxy, conf, cls in reversed(det):
            x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
            xywh_obj = [x_c, y_c, bbox_w, bbox_h]
            xywh_bboxs.append(xywh_obj)
            confs.append([conf.item()])
            oids.append(int(cls))
        xywhs = torch.Tensor(xywh_bboxs)
        confss = torch.Tensor(confs)
          
        outputs = deepsort.update(xywhs, confss, oids, im0)
        if len(outputs) > 0:
            bbox_xyxy = outputs[:, :4]
            identities = outputs[:, -2]
            object_id = outputs[:, -1]
            
            draw_boxes(im0, bbox_xyxy, self.model.names, object_id,identities)

        return log_string


@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
    init_tracker()
    cfg.model = cfg.model or "yolov8n.pt"
    cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2)  # check image size
    cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
    predictor = DetectionPredictor(cfg)
    predictor()


if __name__ == "__main__":
    predict() 

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling