import pandas as pd 
import matplotlib.pyplot as plt 

def main_menu():
    print("\n------- Student Management System -------\n")
    print("1. Create/Import New Dataframe")
    print("2. Student Data Analysis")
    print("3. Student Data Visualisation")
    print("4. Export Dataframe to csv file")

def create_dataframe_menu():
    print("\n------- Create Dataframe -------\n")
    print("1. Create Dataframe")
    print("2. Import Dataframe from csv file")
    print("3. Add/Modify Custom Index")
    print("4. Add/Modify Custom Column Head")
    print("5. Return to main menu")

def analysis_menu():
    print("\n------- Data Analysis using Python -------\n")
    print("1.  Display All records")
    print("2.  Print first nth records")
    print("3.  Print last nth records")
    print("4.  Print All records in order of Name")
    print("5.  Display student with maximum marks")
    print("6.  Display student with minimum marks")
    print("7.  Display students who have secured passing marks")
    print("8.  Print distinct classes")
    print("9.  Add a row to Dataframe")
    print("10. Delete a row from Dataframe")
    print("11. Return to main menu")

def visualisation_menu():
    print("\n------- Visualisation using Matplotlib -------\n")
    print("1. Plot Line graph (Subject wise marks)")
    print("2. Plot Bar graph (Students, Marks)")
    print("3. Plot Horizontal Bar graph (Student, Class)")
    print("4. Return to main menu")
	
cols = ['admn','name','dob','class','maths','english','science','marks']
df = pd.DataFrame([],columns = cols) # Create an EmptyDataFrame
while True:
    main_menu()
    ch = int(input("Select Option: "))
    if ch == 1:
        # Create New Dataframe
        create_dataframe_menu()
        ch = int(input("Select Option: "))
        if ch == 1:
            data = []
            while True:
                ch = input("Add Row [y/n]")
                if ch.lower() == 'y':
                    admn = int(input("Admission Number: "))
                    name = input("Student Name: ")
                    dob = input("DOB in dd-mm-yyyy format: ")
                    std = int(input("Class: "))
                    maths = float(input("Maths: "))
                    english = float(input("English: "))
                    science = float(input("Science: "))
                    marks = maths+english+science
                    data.append([admn, name, dob, std, marks])
                else:
                    break
            df = pd.DataFrame(data, columns = cols)
        elif ch == 2:
            file = input("File name: ")
            df = pd.read_csv(file)
        elif ch == 3:
            index_list = input("Index List: ").split(",")
            df.index = index_list
        elif ch == 4:
            column_list= input("Column List: ").split(",")
            df.columns = column_list
        print(df)

    elif ch == 2:
        while True:
            # Student  Data Analysis
            analysis_menu()
            ch = int(input("Select Option: "))
            if ch == 1:
                print(df)
            elif ch == 2:
                nth = int(input("Enter no of rows to display: "))
                print(df.head(nth))
            elif ch == 3:
                nth = int(input("Enter number of rows to display: "))
                print(df.tail(nth))
            elif ch == 4:
                print(df.sort_values(by='name'))
            elif ch == 5:
                print(df[df['marks'] == df['marks'].max()])
            elif ch == 6:
                print(df[df.marks == df["marks"].min()])
            elif ch == 7:
                print(df[df['marks']*100/240 >= 33])
            elif ch == 8:
                print(df['class'].unique())
            elif ch == 9:
                while True:
                    ch = input("Add Row [y/n]")
                    if ch.lower() == 'y': 
                        admn = int(input("Admission Number: "))
                        name = input("Student Name: ")
                        dob = input("DOB in dd-mm-yyyy format: ")
                        std = int(input("Class: "))
                        maths = float(input("Maths: "))
                        english = float(input("English: "))
                        science = float(input("Science: "))
                        marks = maths+english+science
                        df = df.append({"admn": admn, "name":name,
                            "dob": dob, "class": std, "maths": maths,
                            "english": english, "science": science,
                            "marks": marks}, ignore_index=True)
                    else:
                        break
            elif ch == 10:
                print("1. Delete Row by Index")
                print("2. Delete Row by Admn No.")
                ch = int(input("Select Option: "))
                if ch == 1:
                    idx = int(input("Index to delete: "))
                    df = df.drop(index = idx)
                elif ch == 2:
                    admn = int(input("Admn no to delete: "))
                    df = df.drop(df[df["admn"] == admn].index)
                else:
                    print("Wrong Option Selected! ")
            else:
                print("Returning to main menu")
                break
    elif ch == 3:
        while True:
            # Student Data Visualisation
            visualisation_menu()
            ch = int(input("Select Option: "))
            if ch == 1:
                plt.plot(df['name'], df['maths'], label='Maths', color = "blue", marker="*")
                plt.plot(df['name'], df['english'], label='English', color = "green", marker="*")
                plt.plot(df['name'], df['science'], label='Science', color = "purple", marker="*")
                plt.xlabel("Student", fontsize=12)
                plt.ylabel("Marks", fontsize=12)
                plt.title("Subject Wise Marks of Students", fontsize=16)
                plt.legend()
                plt.show()
            elif ch == 2:
                x_values = df["name"]
                y_values = df['marks']
                plt.bar(x_values, y_values, color = 'orange')
                plt.xlabel("Students", fontsize=12)
                plt.ylabel("Marks", fontsize=12)
                plt.title("Students - Marks Visualisation", fontsize=14)
                plt.show()
            elif ch == 3:
                x_values = df["name"]
                y_values = df["class"]
                plt.barh(x_values, y_values, color = 'magenta')
                plt.xlabel("Students", fontsize=12)
                plt.ylabel("Class", fontsize=12)
                plt.title("Students - Class Visualisation", fontsize=16)
                plt.show()
            elif ch == 4:
                print("Returning to main menu")
                break
            else:
                print("Wrong Option Selected! ")
    elif ch == 4:
        # Export Dataframe to csv file
        file = input("File name: ")
        df.to_csv(file, index = False)
    elif ch == 5:
        # Exit
        print("Bye ...")
        exit()
    else:
        # Error Display and Exit
        print("Error! Wrong option selected. ")
        break 

Python Online Compiler

Write, Run & Share Python code online using OneCompiler's Python online compiler for free. It's one of the robust, feature-rich online compilers for python language, supporting both the versions which are Python 3 and Python 2.7. Getting started with the OneCompiler's Python editor is easy and fast. The editor shows sample boilerplate code when you choose language as Python or Python2 and start coding.

Taking inputs (stdin)

OneCompiler's python online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample python program which takes name as input and print your name with hello.

import sys
name = sys.stdin.readline()
print("Hello "+ name)

About Python

Python is a very popular general-purpose programming language which was created by Guido van Rossum, and released in 1991. It is very popular for web development and you can build almost anything like mobile apps, web apps, tools, data analytics, machine learning etc. It is designed to be simple and easy like english language. It's is highly productive and efficient making it a very popular language.

Tutorial & Syntax help

Loops

1. If-Else:

When ever you want to perform a set of operations based on a condition IF-ELSE is used.

if conditional-expression
    #code
elif conditional-expression
    #code
else:
    #code

Note:

Indentation is very important in Python, make sure the indentation is followed correctly

2. For:

For loop is used to iterate over arrays(list, tuple, set, dictionary) or strings.

Example:

mylist=("Iphone","Pixel","Samsung")
for i in mylist:
    print(i)

3. While:

While is also used to iterate a set of statements based on a condition. Usually while is preferred when number of iterations are not known in advance.

while condition  
    #code 

Collections

There are four types of collections in Python.

1. List:

List is a collection which is ordered and can be changed. Lists are specified in square brackets.

Example:

mylist=["iPhone","Pixel","Samsung"]
print(mylist)

2. Tuple:

Tuple is a collection which is ordered and can not be changed. Tuples are specified in round brackets.

Example:

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)

Below throws an error if you assign another value to tuple again.

myTuple=("iPhone","Pixel","Samsung")
print(myTuple)
myTuple[1]="onePlus"
print(myTuple)

3. Set:

Set is a collection which is unordered and unindexed. Sets are specified in curly brackets.

Example:

myset = {"iPhone","Pixel","Samsung"}
print(myset)

4. Dictionary:

Dictionary is a collection of key value pairs which is unordered, can be changed, and indexed. They are written in curly brackets with key - value pairs.

Example:

mydict = {
    "brand" :"iPhone",
    "model": "iPhone 11"
}
print(mydict)

Supported Libraries

Following are the libraries supported by OneCompiler's Python compiler

NameDescription
NumPyNumPy python library helps users to work on arrays with ease
SciPySciPy is a scientific computation library which depends on NumPy for convenient and fast N-dimensional array manipulation
SKLearn/Scikit-learnScikit-learn or Scikit-learn is the most useful library for machine learning in Python
PandasPandas is the most efficient Python library for data manipulation and analysis
DOcplexDOcplex is IBM Decision Optimization CPLEX Modeling for Python, is a library composed of Mathematical Programming Modeling and Constraint Programming Modeling