Python error
I was making a code for a tetris game.
Here's the code. #!/usr/bin/env python
#-- coding: utf-8 --
Very simple tetris implementation
Control keys:
Down - Drop stone faster
Left/Right - Move stone
Up - Rotate Stone clockwise
Escape - Quit game
P - Pause game
Have fun!
Copyright (c) 2010 "Kevin Chabowski"[email protected]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
from random import randrange as rand
import pygame, sys
The configuration
config = {
'cell_size': 20,
'cols': 8,
'rows': 16,
'delay': 750,
'maxfps': 30
}
colors = [
(0, 0, 0 ),
(255, 0, 0 ),
(0, 150, 0 ),
(0, 0, 255),
(255, 120, 0 ),
(255, 255, 0 ),
(180, 0, 255),
(0, 220, 220)
]
Define the shapes of the single parts
tetris_shapes = [
[[1, 1, 1],
[0, 1, 0]],
[[0, 2, 2],
[2, 2, 0]],
[[3, 3, 0],
[0, 3, 3]],
[[4, 0, 0],
[4, 4, 4]],
[[0, 0, 5],
[5, 5, 5]],
[[6, 6, 6, 6]],
[[7, 7],
[7, 7]]
]
def rotate_clockwise(shape):
return [ [ shape[y][x]
for y in xrange(len(shape)) ]
for x in xrange(len(shape[0]) - 1, -1, -1) ]
def check_collision(board, shape, offset):
off_x, off_y = offset
for cy, row in enumerate(shape):
for cx, cell in enumerate(row):
try:
if cell and board[ cy + off_y ][ cx + off_x ]:
return True
except IndexError:
return True
return False
def remove_row(board, row):
del board[row]
return [[0 for i in xrange(config['cols'])]] + board
def join_matrixes(mat1, mat2, mat2_off):
off_x, off_y = mat2_off
for cy, row in enumerate(mat2):
for cx, val in enumerate(row):
mat1[cy+off_y-1 ][cx+off_x] += val
return mat1
def new_board():
board = [ [ 0 for x in xrange(config['cols']) ]
for y in xrange(config['rows']) ]
board += [[ 1 for x in xrange(config['cols'])]]
return board
class TetrisApp(object):
def init(self):
pygame.init()
pygame.key.set_repeat(250,25)
self.width = config['cell_size']*config['cols']
self.height = config['cell_size']*config['rows']
self.screen = pygame.display.set_mode((self.width, self.height))
pygame.event.set_blocked(pygame.MOUSEMOTION) # We do not need
# mouse movement
# events, so we
# block them.
self.init_game()
def new_stone(self):
self.stone = tetris_shapes[rand(len(tetris_shapes))]
self.stone_x = int(config['cols'] / 2 - len(self.stone[0])/2)
self.stone_y = 0
if check_collision(self.board,
self.stone,
(self.stone_x, self.stone_y)):
self.gameover = True
def init_game(self):
self.board = new_board()
self.new_stone()
def center_msg(self, msg):
for i, line in enumerate(msg.splitlines()):
msg_image = pygame.font.Font(
pygame.font.get_default_font(), 12).render(
line, False, (255,255,255), (0,0,0))
msgim_center_x, msgim_center_y = msg_image.get_size()
msgim_center_x //= 2
msgim_center_y //= 2
self.screen.blit(msg_image, (
self.width // 2-msgim_center_x,
self.height // 2-msgim_center_y+i*22))
def draw_matrix(self, matrix, offset):
off_x, off_y = offset
for y, row in enumerate(matrix):
for x, val in enumerate(row):
if val:
pygame.draw.rect(
self.screen,
colors[val],
pygame.Rect(
(off_x+x) *
config['cell_size'],
(off_y+y) *
config['cell_size'],
config['cell_size'],
config['cell_size']),0)
def move(self, delta_x):
if not self.gameover and not self.paused:
new_x = self.stone_x + delta_x
if new_x < 0:
new_x = 0
if new_x > config['cols'] - len(self.stone[0]):
new_x = config['cols'] - len(self.stone[0])
if not check_collision(self.board,
self.stone,
(new_x, self.stone_y)):
self.stone_x = new_x
def quit(self):
self.center_msg("Exiting...")
pygame.display.update()
sys.exit()
def drop(self):
if not self.gameover and not self.paused:
self.stone_y += 1
if check_collision(self.board,
self.stone,
(self.stone_x, self.stone_y)):
self.board = join_matrixes(
self.board,
self.stone,
(self.stone_x, self.stone_y))
self.new_stone()
while True:
for i, row in enumerate(self.board[:-1]):
if 0 not in row:
self.board = remove_row(
self.board, i)
break
else:
break
def rotate_stone(self):
if not self.gameover and not self.paused:
new_stone = rotate_clockwise(self.stone)
if not check_collision(self.board,
new_stone,
(self.stone_x, self.stone_y)):
self.stone = new_stone
def toggle_pause(self):
self.paused = not self.paused
def start_game(self):
if self.gameover:
self.init_game()
self.gameover = False
def run(self):
key_actions = {
'ESCAPE': self.quit,
'LEFT': lambda:self.move(-1),
'RIGHT': lambda:self.move(+1),
'DOWN': self.drop,
'UP': self.rotate_stone,
'p': self.toggle_pause,
'SPACE': self.start_game
}
self.gameover = False
self.paused = False
pygame.time.set_timer(pygame.USEREVENT+1, config['delay'])
dont_burn_my_cpu = pygame.time.Clock()
while 1:
self.screen.fill((0,0,0))
if self.gameover:
self.center_msg("""Game Over!
Press space to continue""")
else:
if self.paused:
self.center_msg("Paused")
else:
self.draw_matrix(self.board, (0,0))
self.draw_matrix(self.stone,
(self.stone_x,
self.stone_y))
pygame.display.update()
for event in pygame.event.get():
if event.type == pygame.USEREVENT+1:
self.drop()
elif event.type == pygame.QUIT:
self.quit()
elif event.type == pygame.KEYDOWN:
for key in key_actions:
if event.key == eval("pygame.K_"
+key):
key_actions[key]()
dont_burn_my_cpu.tick(config['maxfps'])
if name == 'main':
App = TetrisApp()
App.run() The output is here. 