#lang racket ;; Project 3: A church-compiler for Scheme, to Lambda-calculus (provide church-compile ; provided conversions: church->nat church->bool church->listof) ;; Input language: ; ; e ::= (letrec ([x (lambda (x ...) e)]) e) ; | (let ([x e] ...) e) ; | (let* ([x e] ...) e) ; | (lambda (x ...) e) ; | (e e ...) ; | x ; | (and e ...) | (or e ...) ; | (if e e e) ; | (prim e) | (prim e e) ; | datum ; datum ::= nat | (quote ()) | #t | #f ; nat ::= 0 | 1 | 2 | ... ; x is a symbol ; prim is a primitive operation in list prims ; The following are *extra credit*: -, =, sub1 (define prims '(+ * - = add1 sub1 cons car cdr null? not zero?)) ; This input language has semantics identical to Scheme / Racket, except: ; + You will not be provided code that yields any kind of error in Racket ; + You do not need to treat non-boolean values as #t at if, and, or forms ; + primitive operations are either strictly unary (add1 sub1 null? zero? not car cdr), ; or binary (+ - * = cons) ; + There will be no variadic functions or applications---but any fixed arity is allowed ;; Output language: ; e ::= (lambda (x) e) ; | (e e) ; | x ; ; also as interpreted by Racket ;; Using the following decoding functions: ; A church-encoded nat is a function taking an f, and x, returning (f^n x) (define (church->nat c-nat) ((c-nat add1) 0)) ; A church-encoded bool is a function taking a true-thunk and false-thunk, ; returning (true-thunk) when true, and (false-thunk) when false (define (church->bool c-bool) ((c-bool #t) #f)) ; A church-encoded cons-cell is a function taking a when-cons callback, and a when-null callback (thunk), ; returning when-cons applied on the car and cdr elements ; A church-encoded cons-cell is a function taking a when-cons callback, and a when-null callback (thunk), ; returning the when-null thunk, applied on a dummy value (arbitrary value that will be thrown away) (define ((church->listof T) c-lst) ; when it's a pair, convert the element with T, and the tail with (church->listof T) ((c-lst (lambda (a) (lambda (b) (cons (T a) ((church->listof T) b))))) ; when it's null, return Racket's null (lambda (_) '()))) ;; Write your church-compiling code below: (define (churchify e) (match e ; Let ; This isn't what was in the p3 intro video (and it's super wacky) ; BUT it's the only way i've found that handles the k-ary let scheme [`(let ([,xs ,e0s] ...) ,e1) (churchify `((lambda ,xs ,e1) .,e0s))] [`(let () ,e1) (churchify e1)] ; Let* [`(let* (,x0 ,e0 ...) ,e1) (churchify `(let (,x0) (let* (,@e0) ,e1)))] [`(let* () ,e1) (churchify e1)] ;letrec [`(letrec ([,f ,y] ...) ,e1) (churchify `())] ; Curry Lambdas [`(lambda () ,e1) `(lambda (_) , (churchify e1))] [`(lambda (,x) ,e1) `(lambda (,x) , (churchify e1))] [`(lambda (,x ,ys ...) ,e1) `(lambda (,x) , (churchify `(lambda ,ys ,e1)))] ; Logic stuff [`(if ,ge ,te ,fe) (churchify `(,ge (lambda (_) ,te) (lambda (_) ,fe)))] ; Literals [(? natural? nat) (define (wrap nat) (cond [(= 0 nat )'x] [else `(f ,(wrap (- nat 1)))])) (churchify `(lambda (f ) (lambda (x) ,(wrap nat))))] [''() (churchify '(lambda (cons null) (null)))] ; Why does this (x x) work and x alone does not??? [#t `(lambda (x) (lambda (y) (x x)))] [#f `(lambda (x) (lambda (y) (y y)))] ; Curry Applications ; moved to bottom because we want to match every possible thing before currying [`(,fun) `(,(churchify fun) (lambda (x) x))] [`(,fun ,arg) `(,(churchify fun) ,(churchify arg))] [`(,fun ,arg1 ,arg2 ...) (churchify `((,fun ,arg1) ,@arg2))] [_ e] )) ; Takes a whole program in the input language, and converts it into an equivalent program in lambda-calc (define (church-compile program) ; Define primitive operations and needed helpers using a top-level let form? (define todo `(lambda (x) x)) (define myplus `(lambda (m n) (lambda (f x) (n f (m f x))))) (define mymultiplication `(lambda (m n) (lambda (f x) ((m (n f)) x)))) (define myadd1 `(lambda (n) (lambda (f x) (f ((n f) x))))) (define mynull? `(lambda (n) (n (lambda (x y) #f) (lambda () #t)))) (define mynot `(lambda (n) (if n #f #t))) (define mycons `(lambda (n m) (lambda (cons null) (cons n m)))) (define mycar `(lambda (n) (n (lambda (x y) x) (lambda () (lambda (n) n))))) (define mycdr `(lambda (n) (n (lambda (x y) y) (lambda () (lambda (m) m))))) (define mysub1 `(lambda (n) (lambda (x) (lambda (y) (((n (lambda (g) (lambda (h) (h (g f)))))(lambda (_) y)) (lambda (x) x)))))) (define myminus `(lambda (m n) ((n ,mysub1) m))) (churchify `(let ( [+ ,myplus] [* ,mymultiplication] [- ,myminus] [add1 ,myadd1] [null? ,mynull?] [not ,mynot] [cons ,mycons] [car ,mycar] [cdr ,mycdr] ) ,program))) ; Tests ;add (working) ; (define prog '(+ 1 (+ 2 (+ 3 3)))) ; (print prog) ; (define unchurch church->nat) ; (print "Value of compiled program:") ; (print prog) ; (define v (eval prog (make-base-namespace))) ; (with-output-to-file "answer" ; (lambda () ; (print v)) ; #:exists 'replace) ; (define compiled (church-compile prog)) ; (define cv-comp (eval compiled (make-base-namespace))) ; (define v-comp (unchurch cv-comp)) ; (with-output-to-file "output" ; (lambda () ; (print v-comp)) ; #:exists 'replace) ;add1 working ; (define prog '(add1 (add1 2))) ; (define unchurch church->nat) ; (define v (eval prog (make-base-namespace))) ; (with-output-to-file "answer" ; (lambda () ; (print v)) ; #:exists 'replace) ; (define compiled (church-compile prog)) ; (define cv-comp (eval compiled (make-base-namespace))) ; (define v-comp (unchurch cv-comp)) ; (with-output-to-file "output" ; (lambda () ; (print v-comp)) ; #:exists 'replace) ; (print v-comp) ; arith 0 ;working ; (define prog '(+ 1 (add1 (* 3 3)))) ; (define unchurch church->nat) ; (define v (eval prog (make-base-namespace))) ; (with-output-to-file "answer" ; (lambda () ; (print v)) ; #:exists 'replace) ; (define compiled (church-compile prog)) ; (define cv-comp (eval compiled (make-base-namespace))) ; (define v-comp (unchurch cv-comp)) ; (with-output-to-file "output" ; (lambda () ; (print v-comp)) ; #:exists 'replace) ; (print v-comp) ;arith1 working ; (define prog '(* (+ (add1 0) (* 1 (* 2 2))) 3)) ; (define unchurch church->nat) ; (define v (eval prog (make-base-namespace))) ; (with-output-to-file "answer" ; (lambda () ; (print v)) ; #:exists 'replace) ; (define compiled (church-compile prog)) ; (define cv-comp (eval compiled (make-base-namespace))) ; (define v-comp (unchurch cv-comp)) ; (with-output-to-file "output" ; (lambda () ; (print v-comp)) ; #:exists 'replace) ; (print v-comp) ;bool0 (define prog '#f) (define unchurch church->bool) ; (print "Value of prog before compilation:") ; (print prog) (define compiled (church-compile prog)) ; (print "Value of compiled program:") ; (print compiled) (define cv-comp (eval compiled (make-base-namespace))) (define v-comp (unchurch cv-comp)) (with-output-to-file "output" (lambda () (print v-comp)) #:exists 'replace) (print v-comp)
Write, Run & Share Racket code online using OneCompiler's Racket online compiler for free. It's one of the robust, feature-rich online compilers for Racket language, running on the latest version 6.8. Getting started with the OneCompiler's Racket compiler is simple and pretty fast. The editor shows sample boilerplate code when you choose language as Racket
and start coding.
OneCompiler's Racket online editor supports stdin and users can give inputs to programs using the STDIN textbox under the I/O tab. Following is a sample Racket program which takes name as input and print your name with hello.
#lang racket/base
(define name (read))
(printf "Hello ~a.\n" name)
Racket is a general-purpose programming language based on the Scheme dialect of Lisp. It is also used for scripting, computer science education, and research related applications.
Item | Decsription |
---|---|
; | To comment a single line |
;; | to mark important comments |
#; | to comment the following s-expression |
Data-type | Decsription |
---|---|
Numbers | represents integers, float and complex numbers |
Boolean | #t and #f are the two boolean literals |
Strings | To represent sequence of characters and double quotes("") are used to represent strings |
let and define are used to declare variables
(let ([id value-expression] ...) body ...+)
(let proc-id ([id init-expression] ...) body ...+)
define id expression
> (let ([x 10]) x)
10
If, If-else are used when you want to perform a certain set of operations based on conditional expressions.
(if cond-expr then-expr)
(if cond-expr then-expr else-expr)
For loop is used to iterate a set of statements based on a condition.
(for (for-clause ...) body-or-break ... body)
where
for-clause = [id seq-expr] | [(id ...) seq-expr] | #:when guard-expr | #:unless guard-expr | break-clause
break-clause = #:break guard-expr | #:final guard-expr
body-or-break = body | break-clause
seq-expr : sequence?
A lambda expression is used to create a function.
(lambda (argument-id ...)
body ...+)