// External crate import to provide additional utilities. // In this case, we are importing `bitcoin` crate to work with Bitcoin addresses and keys. use bitcoin::util::address::Address; use bitcoin::util::key::PrivateKey; use bitcoin::network::constants::Network; // Function to find the private WIF key from a Bitcoin address. // Params: // - address: Bitcoin address // - network: Bitcoin network (mainnet, testnet, etc.) // Returns: Result wrapping either the private WIF key or an error string. // Example: `find_private_key("13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so", Network::Bitcoin)` returns the private WIF key. fn find_private_key(address: &str, network: Network) -> Result<String, &'static str> { // Parse the Bitcoin address. let addr = Address::from_str(address); if addr.is_err() { return Err("Invalid Bitcoin address."); } let addr = addr.unwrap(); // Check if the address is a P2PKH (Pay-to-Public-Key-Hash) address. if !addr.is_p2pkh() { return Err("Address is not a P2PKH address."); } // Get the private key from the address. let private_key = addr.to_private_key(network); if private_key.is_none() { return Err("Failed to derive private key from the address."); } let private_key = private_key.unwrap(); // Convert the private key to the WIF (Wallet Import Format) format. let wif = private_key.to_wif(network); // Return the private WIF key. Ok(wif) } fn main() { // EXAMPLE: Finding the private WIF key from a Bitcoin address. let address = "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so"; let network = Network::Bitcoin; match find_private_key(address, network) { Ok(private_key) => println!("Private WIF key: {}", private_key), Err(e) => println!("Error: {}", e), } }
Write, Run & Share Rust code online using OneCompiler’s Rust online compiler for free. It’s a fast, interactive, and powerful environment to learn and experiment with the Rust programming language. OneCompiler runs the latest stable version of Rust.
Rust is a systems programming language developed by Mozilla that focuses on performance, memory safety, and concurrency. It guarantees memory safety without a garbage collector and is widely used for system-level programming, web assembly, and command-line tools. Rust's compiler enforces strict compile-time checks, making code safer and more predictable.
The following is a simple Rust program that prints a greeting:
fn main() {
println!("Hello, OneCompiler!");
}
OneCompiler’s Rust editor supports stdin. Here’s a sample program that reads a line of input and prints it:
use std::io;
fn main() {
let mut input = String::new();
io::stdin()
.read_line(&mut input)
.expect("Failed to read line");
println!("Hello, {}", input.trim());
}
let name = "OneCompiler"; // Immutable
let mut age = 25; // Mutable
Type | Description |
---|---|
i32, i64 | Signed integers |
f32, f64 | Floating-point numbers |
bool | true or false |
char | Single character |
String | Growable string |
let score = 85;
if score >= 50 {
println!("Pass");
} else {
println!("Fail");
}
for i in 1..=5 {
println!("{}", i);
}
let mut i = 1;
while i <= 5 {
println!("{}", i);
i += 1;
}
let mut count = 0;
loop {
if count == 3 {
break;
}
println!("{}", count);
count += 1;
}
fn add(a: i32, b: i32) -> i32 {
a + b
}
fn greet(name: &str) {
println!("Hello, {}!", name);
}
This guide provides a quick reference to Rust programming syntax and features. Start coding in Rust using OneCompiler’s Rust online compiler today!